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ABSTRACT

System designers are often faced with the task of

assigning symbolic representations to user actions, e.g.,

icons to choices in graphical interfaces. When a confusion

matrix--on discriminability of the symbols--is available, it

is used to guide the selection of the set of symbols to be

implemented. While trial and error methods or clustering

approaches have been used to analyze this problem, it was only

recently that a true optimization approach was offered.

Theise (1989) formulated the symbol selection problem as a

zero-one integer programming problem whose objective function

was linked to the minimization of within-subset confusion.

Confusion is not the traditional metric used by human

factors engineers to analyze confusion matrices. Rather,

transmitted-information--a metric from information theory--has

long been used to evaluate system performance. The purpose of

this thesis is to formulate a model of subset selection in

which transmitted information will be maximized.

It is possible to specify a correct model, although

current algorithms are incapable of solving it. This thesis

reports on the performance of a GAMS-based approximation to

the original model, as well as an exhaustive enumeration

scheme. Solutions from both information-theoretic approaches

are compared to solutions from the confusion/recognition

model.
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I. INTRODUCTION

A. PURPOSE FOR THESIS

The problem presented in this thesis was introduced to the

author by Dr. Eric S. Theise as a follow-up to a paper he had

published in Human Factors in 1989 titled "Finding a Subset of

Stimulus-Response Pairs with Minimum Total Confusion: A Binary

Integer Programming Approach." As the title implies, the

paper dealt with optimization models using binary integer

programming. The idea was to select an optimal subset from a

given set of stimulus-response (S-R) pairs using confusion as

a guiding index to optimality. Dr. Theise was interested in

further research into optimal subsets; however, he was

interested in using information theory to develop a guiding

index rather than using confusion.

A brief introduction to S-R pairs and their use in

confusion matrices is warranted here. An S-R pair is simply

a stimulus And the corresponding response to that stimulus.

A confusion matrix can be formed from stimulus-response

experimentation. An example of a confusion matrix taken from

Clarke's (1957) work on phonetic syllables is presented in

Table 1. The matrix is formed by presenting a test subject

with a stimulus such as the syllable ka. If the test subject

correct"y identifies the syllable as ka, a tally is made on



given subspecialty are typically not aware of optimizing

techniques being used in other subspecialties that could be of

potential benefit to them. (Fisher, in press) The research in

this paper is aimed at using operations research methods to

solve a problem of an optimal performance nature from the

realm of human factors. As such, the purpose of this paper is

to produce an optimization model that will select a subset of

S-R pairs from a given set S-R pairs with the objective of

maximizing transmitted-information. Appropriately, this model

will be referred to as the Transmitted-Information Model.

In a military environment, this research has implications

for the command, control, and communications (C3) discipline.

C3 can often be the deciding factor in the failure or success

of military missions. This type of research can help system

designers make C3 systems more user-friendly through better

human-system interfaces, thus helping the commander achieve

his goals more effectively. Other areas that may benefit from

this type of researL.hi include antisubmarine warfare (ASW),

computer science including software design, and human-system

interface applications such as aircraft cockpit design.

B. RESEARCH QUESTIONS

The answers to several questions are explored in this

paper. The questions of interest are as follows: Can a model

be formulated that uses an information theoretic framework to

select a subset of S-R pairs in such a way as to maximize the
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amount of information transmitted? Can this model be solved

using standard mathematical programming software? If not, can

a special purpose algorithm or effective heuristic be

developed? How does the solution to this model compare with

the minimal confusion solution for the same confusion matrix

data?

C. SCOPE AND ORGANIZATION

What this paper attempts to do is lay the groundwork for

better empirical optimization in problems dealing with human

factors. This can be extremely beneficial to the C3 community

when working on problems involving the human-system interface,

especially when time is critical, and mistakes can cost lives

and possibly jeopardize national security.

In the process of laying this groundwork, a model will be

developed that will optimize the transmitted-information from

a subset of S-R pairs. The results of the application of the

model to 17 data sets will be compared to the results from the

model previously developed by Theise (1989). The comparison

will attempt to determine the better optimization method.

This thesis is broken into seven chapters. Chapter I

provides the purpose, scope, and organization of the thesis.

Chapter II explores some background in the human-system

interface area with special attention to C3 issues.

Chapter III will provide background on the previous work

by Theise (1989) and will define some of the concepts to be

4



used throughout the thesis. Chapter IV introduces information

theory and its associated terms and concepts to be used in

developing a new optimization model. Chapter V presents the

concept of optimal subsets using information theory. In this

chapter, the optimization model is developed, and is then

applied to 17 available data sets.

Chapter VI provides an analysis of the results produced in

Chapter V and compares these results to the results of the

same data applied to the confusion/recognition model.

Finally, Chapter VII presents conclusions and recommendations

including artas that may warrant further study.

5



11. BACKGROUND

A. NATURE OF THE PROBLEM

1. Human Factors Defined

The field of human factors is concerned with improving

the interface between people and machines or objects. For

this reason, human factors is often referred to by the more

descriptive term--human-system interface.

Human factors, then, seeks to change the things people use
and the environments in which they use these things to
better match the capabilities, limitations, and needs of
people. (Sanders and McCormick, 1987, p. 4)

With this in mind, it should be obvious that a primary goal of

human factors is to improve the efficiency and effectiveness

of people in the performance of the various tasks required of

them.

2. Optimal System Design

System designers are not always trained in human

factors engineering and, therefore, do not think in terms of

optimal performance. Instead, they assume they have found the

correct way to do something, and they proceed accordingly.

This study assumes system designers are concerned with optimal

performance.

3. Stimulus-Response Pairs

System designers are often faced with the task of

choosing which of several stimuli should be used to represent
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a given action. For example, which of several possible icons

should represent a specific user choice in a graphical user

interface? Which of several possible words should represent

a user choice in a speech controlled system? Which of several

shapes should be manipulated at a console to produce a desired

effect? If empirical testing is carried out (as it should

be), the results are usually tabulated in a confusion matrix.

The confusion matrix then guides the selection process.

Empirical testing of this type entails presenting test

subjects with the various stimuli under consideration and

tabulating the responses of the test subjects. For example,

test subjects might be asked to examine a list of computer

commands and their associated functions; shortly thereafter,

the functions are stated one by one, and the test subjects

must identify the associated function. Naturally, there will

be some confusion in selecting the proper functions, but the

most logical, most easily recognizable will be correctly

identified most of the time. The results of all trials with

all test subjects can be tabulated in confusion matrix form

where the data is more easily analyzed. The analysis that

follows may involve examining the commands that are most often

confused and finding possible replacements for those commands.

Once the data is tabulated, however, the analyst may

experience difficulty determining which are the best S-R

pairs. In other words, if a subset of the S-R pairs is

needed, how can the "best" subset be found? That depends

7



partly on the analyst's definition of what "best" really

means. Tools for optimally selecting subsets of

stimulus-response pairs from a confusion matrix have only

recently been developed (Theise, 1989). These tools have

focused on the minimization of confusion within the subset and

maximization of recognition. An alternative approach,

appealing for its conformity with an information-theoretic

framework, would be to maximize the amount of information

transmitted between the stimulus and response sets.

Information theory is presented in Chapter IV.

B. COMMAND, CONTROL, AND COMMUNICATIONS

1. Definition of Command and Control (C2)

Joint Chiefs of Staff Publication 1 (JCS Pub 1)

defines command and control as follows:

Command and Control: The exercise of authority and
direction by a properly designated commander over assigned
forces in the accomplishment of the mission. Command and
control functions are performed through an arrangement of
personnel, equipment, communications, facilities, and
procedures which are employed by a commander in planning,
directing, coordinating, and controlling forces and
operations in the accomplishment of the mission. (JCS Pub
1, 1987, p. 77)

2. The Command and Control System

As equally important definition is that of a C2

system. A C2 system is:

The facilities, equipment, communications, procedures, and
personnel essential to a commander for planning,
directing, and controlling operations of assigned forces
pursuant to the missions assigned. (JCS Pub 1, 1987, p.
77)

8



A C2 system contains all the tangible elements required for

command and control including communications, equipment, and

procedures. These elements have very strong human factors, or

human performance, ramifications. If these elements are well

designed, they can be of invaluable service to the commander

in his function of decision maker. The hardware involved in

C2 systems is very expensive and difficult to change, as are

procedures; therefore, it is imperative that the best possible

systems be developed and deployed the first time to avoid the

costly process of replacing ineffective or inadequate systems.

(Berg, 1990, pp. 11-12)

It should also be noted at this point that, since a C2

system contains communications, by definition, the terms

command and control (C2), and command, control, and

communications (C3), may be used interchangeably. Typically,

the term C3 is used by some to put special emphasis on

communications. (Bethmann and Malloy, 1989, pp. 9-10)

3. C3 and Human Factors

It should be no small surprise that human factors

plays a major role in the C2 process. The C2 process involves

people interacting with machines, especially communications

devices. Whenever communications takes place, there is a

potential for misunderstanding or misinterpretation. This is

one area where better human factors engineering or systems
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design would be useful. One aim of better human systems

design in C3 systems is to reduce potential confusion. If

some of the tools of C3 could be made more understandable,

confusion would be reduced.

What are some of the tools of C3 that required human

factors attention? Examples include displays on all types of

electronic equipment; symbology, terminology, and physical

controls such as knobs, switches, and levers. Some of these

items are physical or visible while some are conceptual.

However, they all require special care in their development if

confusion is to be minimized.

4. C3 and Information Transfer

Another concept to consider in design is that of

information and its requisite transfer. After all, there is

no communications without the transfer of information. In

fact, the C2 process relies heavily on information transfer.

A commander cannot make decisions or give orders if he doesn't

receive and transmit information in some way. Furthermore, in

modern warfare, a commander must receive and transmit

information at ever increasing speeds if the enemy is to be

defeated.

The state of modern technology in this information age

affords these ever increasing speeds, but guarantees nothing

of the quality of the information being transferred. The best

equipment in the world cannot turn a useless input into

10



transferred information, but it will get there quickly and

efficiently. The old adage "garbage in, garbage out" applies

here.

5. Boyd's O-O-D-A Loop

As further testimony to the need for more speed and

less confusion in the C2 process, many C2 experts and analysts

use the work of John Boyd and his O-O-D-A loop when discussing

the C2 decision making process. Several derivations of Boyd's

model have been developed, but all stay basically true to the

original model with slight refinements. The basic Boyd model

will be used in this work.

a. The O-O-D-A Loop

John Boyd developed a model of the decision making

process that is typically referred to as the O-O-D-A loop.

The four-letter, hyphenated acronym stands for Observe,

Orient, Decide, and Act. The model structure is shown in

Figure 1. (Orr, 1983, p. 23-27)

The process is self explanatory. The decision

maker observes the environment relative to "the problem" and

the decision he faces. Next, he orients himself and the

variables under his control to the situation. This involves

processing and analyzing the data gathered from the

observations made in the previous step. The next step

requires the decision maker to make a decision, and the final

step puts that decision into action. This is a very

11
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Figure 1 Boyd's O-O-D-A Loop
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simplified overview of the model, but the essence of the

process is all that is required here. (Orr, 1983, p. 24-30)

b. C3 and the O-O-D-A Loop

When the commander uses this process,

communications must take place. The commander must receive

intelligence and other information from various sources, and

he must transmit his decisions and requirements to the

appropriate receivers. In a combat situation, the commander

must not only perform this task with little or no errors, but

he must also do it quicker than the enemy can carry out their

version of these same functions. Whoever can process and move

through their O-O-D-A loop more quickly holds a decided

advantage in a combat situation. The process is complicated

by the "fog of war" which makes mistakes more likely,

requiring a system with a reduced likelihood of errors.

If a system could be developed that was more

efficient and effective at transferring information, the

process would be improved. There are probably many steps that

could be taken to reduce errors and improve system efficiency

and effectiveness. One of those steps is examined here;

attempting to increase information transmitted in the

stimulus-response process. In this case, the commander

receives a stimulus and returns an appropriate response.

This is a case where systems designers need to

ensure that the system being built or redesigned uses the best

13



possible human-system interface they can produce. One

methodology available to systems designers for this purpose is

operations research, including optimization techniques such as

linear programming. Neither operations research nor any other

method can guarantee perfection, but they can work to minimize

errors, or in this case maximize information transmitted

between stimulus and response. The concept of transmitted-

information, as well as information theory in general, will be

covered in Chapter IV.

C. OPTIMIZATION AND C3 EXAMPLES

The following examples give a feel for the need for

optimal design in human interface systems. Information is a

basic commodity in each of these examples; therefore, it makes

sense to think of optimizing transmitted-information in these

examples and other similar situations.

1. An Aircraft Example

Although not a classic C3 example, this aircraft

cockpit design example contains excellent examples of

potential confusion and helps introduce the idea of

information transfer.

In an aircraft cockpit, there are myriad levers,

buttons, switches, and displays that control the aircraft or

provide information to the pilot. How does the pilot remember

where everything is? How does he avoid using the wrong

control for a given situation? One solution is to label

14



everything; however, some things must become so second nature

to a pilot that labels are insufficient for preventing

mistakes. A better solution gives each control a specific

shape enabling the pilot to feel the control, identifying it

by touch. In fact, shape-coding aircraft controls is now

standard practice. But if shape-coding aids discriminability

between different controls, what determines the most

appropriate shape for any given control? For example, if the

flaps were controlled by a lever, would it make more sense to

shape the gripping surface of the lever like a flap (or wing-

like shape) or some other shape? In time the pilot would

adapt to either one, but which would be a better a priori

choice? Which control shape would "tell" the pilot more?

(Kantowitz and Sorkin, 1983, 309-317)

The last question implies a transfer of information

from the lever to the pilot. In fact, if there were no

transfer of information, the pilot would have no reason to use

the lever. In other words, if the stimulus conveys no

information to the user, the user has no reason to respond to

the stimulus.

2. Display Design Example

The design of displays is another excellent example of

a potential source of confusion. If the display layout is not

conducive to the operational environment in which it will be

used, or the symbology is not well conceived, the human

15



operators will be more likely to make mistakes when relying on

the displays, or may choose not to rely on them at all if they

can be avoided. Two display design examples follow.

a. Radar Display

An experiment was carried out at the late 1950s by

Bowen, Andreassi, Truax, and Orlansky (1960) to choose an

optimal set of geometric symbols for radar displays. It was

believed that certain attributes were favorable such as

simplicity, symmetry, and familiarity. These attributes are

obviously chosen with the human operator in mind. The

experiment presented subjects with various symbols, under

various display conditions (noisy, distorted, blurred), with

the intent of having them indicate on a score sheet which

symbol they had just seen. The results were tabulated and

judgements about the optimal subsets of various sizes were

made. The objective, of course, was to find a set of symbols

whose attributes greatly reduced the likelihood of intersymbol

confusion.

Additionally, the idea of complex, auxiliary

symbols was mentioned. These symbols would be made up of

combinations of the basic symbol set. So, for example, if a

square and a triangle each had their separate meanings, a

triangle inside of a square would have yet another meaning;

most likely, a hybrid meaning that would be a combination of

16



the two separate meanings. The data for this experiment is

included here as one of the test data sets called Bowen.

b. 465L System

In the late 1950s, Strategic Air Command (SAC) was

developing a computer-based command and control system known

as the 465L. As it turned out, users were unhappy with the

system because they were required to "go from display to

display to pull together the elements of the problem."

Parsons, 1972, p. 349) The users felt that fewer displays

that contained more complete information would be a better way

to get the full situation they were attempting to assess.

Here, the concept of more information from an interface device

arose after users experimented with the system. How should

system designers decide on the appropriate symbols to use?

They could simply use the method mentioned in the previous

section concerning radar displays; although, it makes sense in

today's high technology environment to use mathematical tools

to find the optimal set of symbols or the optimal design of a

display.

3. New Global C2 Architecture

The world is changing at a rapid pace and, in an

attempt to more adequately face the future, the Joint Staff

conducted a study through the C2 Functional Analysis and

Consolidation Review Panel (FACRP) to determine the C2

requirements for the future. The report focused on such

17



concepts as a global C2 infrastructure capable of supporting

joint and combined operations. Developing an architecture

that would be interoperable with and acceptable to all

concerned parties is no small task. Of particular interest to

this thesis are the human factors ramifications. A global

architecture means not just equipment, but policies and

procedures as well. Part of the process involves agreement on

terms, concepts, symbols, etc. The report mentions a

requirement to transfer information via displays and

interfaces. (FACRP Report, 1991, pp. 24-30) Designers should

naturally desire displays and interfaces that transfer as much

information as possible with the least amount of interaction

or actual transmission. In other words, make the displays and

interfaces as meaningful as possible so as to minimize the

amount of raw data transfer. This is not a simple task

considering the diversity of experience and culture in joint

and combined operations. Experiments need to be conducted to

decide on things such as terms, symbols, and concepts that

would convey the desired meaning to all possible users. The

report stresses modularity and flexibility. To achieve these

goals, very careful dasign of the aforementioned items is

required. Optimal information transfer should be a goal of

system designers when developing this new global architecture.

18



D. OPTIMIZATION SOFTWARE

Optimization algorithms can be very sophisticated, and can

require an enormous number of repetitive arithmetic

calculations. Today, there are software packages available

that will do all the calculations needed, and will do them

very quickly. For linear programming, LINDO (Schrage, 1987)

has long been one of the most widely used programs in

existence. Today, LINDO is available in many forms including

a PC version. LINDO required the user to completely specify

the problem under consideration with objective function,

constraints, and data on a case by case basis. In other

words, generic models for a class of problem could not be

entered for long term use. Each model had to be individually

produced. Some advances to this process were made using

matrix generators to generate the case specific equations

rather than entering them individually.

However, matrix generators and linear programming packages

are losing ground to computer-readable modeling languages.

(Fourer, 1983, pp. 144-169) These software packages will take

an algebraic set of expressions and generate the case specific

equations for the model ready for values t3 be plugged in for

the variables. In other words, the software program

transforms algebraic form into a form that a mathematical

solver program can interpret. The model produced may be a

very generic model for a class of problems that is capable of

19



reading a data file containing case specific data, additional

parameters, or additional constraints.

The modeling language used in this case was the General

Algebraic Modeling System (GAMS) (Brooke, Kendrick, and

Meeraus, 1988). To understand the power of a model system

such as GAMS consider a problem based on a 3 x 4 matrix

(rows=i=3, columns=j=4). GAMS will allow an algebraic

expression such as:

Zi= lxi = sj for all j

to be written as:

SUM(I, X(I,J) ) =E= S(J).

In turn, GAMS generates the equations:

X1.1 + X 1 .2 + X 1 .3 + XI 4 = S 1

X2.1 + X2. 2 + X 2 ,3 + X 2 ,4 = S 2

X3.1  + X3. 2 + X3. 3 + X 3 ,4 = S 3

This is a very convenient tool, especially when the algebraic

expression becomes complicated or when the expression

represents a large number of possible iterations such as when

the matrix in the above example becomes very large. Past

linear programming methods required complete equation

specification via user entry or matrix generation to produce

the necessary equations suitable for solving. Additionally,

these methods had data values tied directly to the equations.

Modeling languages generate generic sets of equations
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independent of specific data values. The generic equations,

or models, can then be augmented by separate data files.

GAMS is a very useful program that acts as a front-end

processor for mathematical solver programs. GAMS generates

equations from algebraic expressions, performs pre-solve and

post-solve calculations, and provides for output data

formatting. The mathematical solvers are capable of solving

specific types or forms of problems and have the task of

optimizing sets of equations. Some of the solvers available

for use with GAMS are Zero/One Optimization Method (ZOOM)

(Marsten and Singhal, 1988) for models with binary and general

integer variables, Modular In-core Nonlinear Optimization

System (MINOS) (Gill, Murray, Murtagh, Sanders, and Wright,

1988) for nonlinear and general optimization models with

continuous variables, and XA (Sunset Software Technology,

1987) a very fast and powerful integer program solver. For a

more elaborate description of these software packages, see

GAMS: A User's Guide by Brooke, Kendrick, and Meeraus (1988).
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III. THE CONFUSION APPROACH TO OPTIMIZATION

One successful attempt that has been made at optimization

in human factors engineering was the work on minimizing

confusion done by Theise (1989) that was mentioned in

Chapter I. Theise proposed that if confusion between various

stimuli could be minimized, mistakes would be much less

likely. This method relies on confusion matrices and binary

integer programming. Confusion matrices were briefly

discussed in the Introduction. A brief review of confusion

matrices and their use is presented in this chapter.

A. THE CONFUSION MATRIX

Analysis in the area of discriminability has been going on

for years, taking many evolutionary turns. The shape-coding

of aircraft controls comes from early empirical research in

the area of discriminability and confusion. Empirical

analysis usually involved experiments where subjects were

presented with stimuli and prompted for a response. The

results were tabulated in a confusion matrix where recognition

between a stimulus and its proper response is tabulated on the

main diagonal, and confusion between stimuli and responses is

tabulated on the off-diagonal. A simple example of a

confusion matrix was presented in Table 1.
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In early analysis, picking subsets of S-R pairs from a

matrix was usually done by simply examining the matrix and

selecting the pairs that appeared to have little interaction

with each other--'eyeballing it.' Eyeballing it can be rather

easy if the confusion matrix is small and sparse but becomes

increasingly difficult as the matrix becomes larger or more

dense.

B. CLUSTER ANALYSIS

As this area of study grew, a more scientific process

called cluster analysis was applied. Cluster analysis entails

the formation of clusters of S-R pairs based on similarity.

The objective is to ensure a high degree of confusion within

clusters but a relatively low degree of confusion between

clusters. Once the clusters have been formed, subsets can be

formed by selecting S-R pairs from different clusters.

Because the clusters have a low degree of intercluster

confusion, selecting from different clusters should imply low

overall confusion within the selected subset, but this is not

always the case. One weakness of some types of cluster

analysis is the inconsistency in the composition and

interpretation of the clusters from analyst to analyst.

Although still in wide use today, it is not a completely

deterministic method, and therefore lacks optimality. Like

'eyeballing it,' cluster analysis becomes more difficult as

matrix density increases. A full discussion of cluster
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analysis including its use on confusion matrices can be found

in Cluster Analysis for Researchers by Romesburg (1984). A

detailed description of clustering algorithms can be found in

Algorithms for Clustering Data by Jain and Dubes (1988).

C. THEISE'S CONFUSION/RECOGNITION MODELS

Recently, Theise (1989) developed models using binary

integer programming to select subsets having minimum total

confusion.

1. Moore's Pushbutton Data

The primary data used by Theise in his presentation

was from T.G. Moore's (1974) research in attempting to find an

optimal set of pushbuttons for the British postal system.

Moore published his findings in an article titled "Tactile and

Kinaesthetic Aspects of Pushbuttons" in Applied Ergonomics,

1974. Moore's method of analysis was a form of cluster

analysis known as McQuitty analysis (McQuitty, 1957). Since

the data set on pushbuttons used by Moore in his research is

relatively large (25 pushbuttons in the original set), it will

also be used as an example in this paper. Additionally, the

pushbutton data was used in two previous optimality studies so

it provides an opportunity for comparison.

Figure 2 shows the 25 pushbuttons that were included

in Moore's initial set. Table 1 shows the confusion matrix &

resulting from a test Moore conducted to determine whether

tactile aspects of the pushbuttons allowed for easy
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distinction between the various buttons. This confusion

matrix provides for the data to be used later in the

Transmitted-Information Model.

The objective of Moore's research was to select six

pushbuttons that would allow operators in the sorting

department of the British Postal System to be able to operate

the sorting machine without actually looking at the

pushbuttons. Six pushbuttons with distinctive tactile aspects

were needed. Moore's research resulted in the selection of

pushbuttons 1, 4, 21, 22, 23, and 24. This will be compared

to the selections arrived at using the Confusion/Recognition

Model and the Transmitted-Information Model developed in this

paper.
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26



U:)OOrOOHOOOOOOOOOOOOOOOO.OOHO

mOOOOOOOOOOOOOOOv-4i-4OOOOOLAO,-4m

MOO0OOOOOOOOOOOOOOOOOOofiOU0M
N I.-

NOOOOOOOOOOOOOOOOOOOOOMTl-4O0
N~

HOOOOOOOOOOOOOOOOOOOOOMiOOrMO

E1N r0
H

OOOOOOOHOAHOOOOHOOOHOOOOOO

H- H- In~

x w~OOOOOOOOOOWOOOONuOO-OOOO-O

w H V4 %

~~T-4

9 NOOr-oHOOOriHNOrOOOOOrOOO0OOOO

0 0H Hn
0 E-OO4c H O OO N HN O O

0 4tooHooor-4O0oroOOOooo~oooooo

N 0Nr - r4 N0r

E-44

:D giOOIo-O0NOHOO00OO~O00HOHO00

0 wHrflOOOOHNvOOOOONOOOOOOOOOOO

HN-400 cOO000HHNHHHHHHNN000 NNN

N ,0 -4000 000-e0f4 -

E-4 27



2. The Confusion/Recognition Models

Theise (1989) developed four models with the

underlying objective of minimizing confusion. The models

select optimal subsets of S-R pairs with minor variations from

one model to the next--one model bases selection strictly on

minimizing confusion while another attempts to maximize

recognition subsequent to minimizing confusion. These models

exhibit the deterministic nature lacking in previous methods

of subset selection and they may find wide use as their

utility is uncovered by system designers and analysts. The

primary interest here will be on Theise's third model, aimed

at minimizing confusion while maximizing recognition.

(Theise, 1989, pp.298-300) Theise called this model The

Maximum Total Recognition Given Minimum Total Confusion

Problem, in this paper it will be referred to as the

Confusion/Recognition Model.

a. The Minimal Confusion Model--Model I

The minimal confusion model (Model 1) is actually

quite simple. The objective function is simply a summation of

all of the off-diagonal values in the selected subset with a

constraint ensuring the selected subset size is correct.

These optimization equations are shown below. Note the ui

variable is included to handle cases where no response was

given to a test stimulus. (Theise, 1989, pp. 297-298)

28



Minimize Zi.l jfiIiiC x + Zi-lUixi

Subject to Eifix i = s

xi binary

An additional constraint is required here due to the

limitations of the software package. The problem lies in the

inability of the mathematical solver to handle binary integer

variables and nonlinearities simultaneously. This is present

in the objective function in the form of the term xi x where

the product of two binary integer variable is required to

select each confusion value being summed in the objective

function. Each value in the matrix is identified by a "row"

variable and a "column" variable. Since this situation cannot

be handled by the solver, an alternative method of identifying

the individual confusion values is needed. Theise solved this

problem using a well known linearization technique wherein the

binary integer variable y, is substituted for the xix term and

the following linear constraints are added. (Phillips,

Ravindran, and Solberg, 1987, pp. 190-191)

i + x - y1 s 1 } for all C, > 0; i j
-x i - x, + 2yj 0

The first constraint ensures that when both xi and x, are equal

to one, y1 will be forced to equal one to maintain the

inequality. This ensures that the proper confusion values are

included in the summation. The second constraint forces y, to

equal zero under all other circumstances such as when only one

29



of xi or x, is equal to one. Close examination reveals that

only the first of these new constraints is needed. Since xi,

and yj are all binary variables, they can only have the

values 0 or 1; additionally, since the objective is to

minimize, the solver will try to make these values 0 wherever

possible. If either xi or x, is 0, y will be 0 due to the

objective function. If xi and x, are both 1, yij will be forced

to be 1 and the confusion value will be included.

Consequently, the second new constraint would be redundant.

This confusion model will now sum only the off-diagonal valuEs

of confusion for the S-R pairs included in the selected

subset.

b. Confusion/Recognition Model--Model 3

Model 3 seeks to ensure not just minimum confusion,

but also maximizes recognition as a secondary consideration.

In other words, minimize confusion first, then, given the

minimum confusion, maximize recognition.

The additional notation required for this model

includes a variable d+ which measures the positive deviation

in total confusion from a specified threshold t. The

threshold is typically preset to a value of zero.

Furthermore, a large positive constant was required to be used

as a penalty cost for deviating from the confusion threshold.

The constant M was defined, for convenience, as the sum of all
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the confusion values in the matrix as shown in the following

equation.

M = ZEi..1 +s. Ci- +

The entire model is as follows:

Maximize i I c~x i - Md+

Subject to Zi=A=i+1iY + Ei=1uiXi - d + 5 t

li=ixi =-' S

x i + xi - yi 1 for all C, > 0; i j j

xi binary

The objective lunction sums the diagonal values of the

selected subset. This, of course, represents recognition.

The value subtracted from this sum is a penalty cost for

exceeding the threshold value of confusion set by the first

listed constraint. Since M is a large value, a large penalty

is paid for exceeding the threshold value; in fact, in the

objective function, the term (- Md+) is more influential than

the sum of the recognition values. The first constraint

ensures that the sum of the off-diagonal values (confusion

values) in the selected subset is minimized by ensuring this

sum is less than the predetermined threshold value. If this

is not the case, the value of d+ increases causing a large

penalty to be paid in the objective function. Therefore, the

model will always try to minimize confusion first, and

maximize recognition second. The other two constraints

operate exactly as they had in Model 1.
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Note that in these models the only confusion values

above the main diagonal are summed. This is because the

confusion matrix is triangularized. This could easily be done

by the model by changing the first constraint to the

following:

Ef=j:+ (Cj + cji)yj + Ej,,ujxj - d+  < t

This modification has the effect of triangularizing the

matrix.

c. Confusion/Recognition Model Results

For Moore's data, the Confusion/Recognition Model

selected a subset of pushbuttons 2, 4, 14, 20, 21, and 23 with

a total value of zero for confusion which, incidentally, is

the lowest value possible since negative confusion values are

undefined. A value of 438 was found for recognition. If

confusion and recognition were totaled in the same way for the

subset Moore selected using cluster analysis, the confusion

value would be five and the recognition value would be 444.

The confusion value is not very large but there are actually

many possible subsets with zero total confusion. Also note

that the recognition is higher in Moore's subset, but this

comes at the expense of the higher confusion value. (Theise,

1989, p. 302)

Based on confusion/recognition it appears as though

Moore failed to select the optimal subset. If optimality were

based on just confusion, his choice is still not optimal.
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However, if recognition alone were used to select the optimal

subset, Moore's selection has a higher value than the subset

selected by the Confusion/Recognition Model. But, Moore's

subset was not optimal in terms of recognition either. In

fact, the maximum recognition subset contains pushbuttons 13,

21, 22, 23, 24, and 25, and has a recognition value of 453.

Unfortunately, this subset also has a confusion value of 13.

The primary consideration here is the question of what is the

"best" subset or what is the best method for selecting the

"optimal" subset. The basic premise of the

Confusion/Recognition Model appears sound. After all,

minimizing confusion is a very desirable action in a human-

system interface. Furthermore, once confusion has been

minimized, selecting what is most easily recognized is also

desirable. It is important to remember at this point that any

model is only as good as the data applied to it and the

experiment that produced the data.
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IV. INFORMATION THEORY

A. INTRODUCTION

Another analytic approach to the problem comes from the

realm of information theory. It has been demonstrated that

given a confusion matrix, the total amount of information

transmitted by all S-R pairs in the matrix can be calculated

using information theory and basic set theory (Kantowitz and

Sorkin, 1983, pp. 142-143; Garner, 1962, pp. 19-58). The

prospect of marrying the binary integer programming approach

to information theory is appealing for its conformity to the

information theoretic framework; a well accepted body of

knowledge exists in areas of study such as human factors,

communications engineering, and statistics and experimental

design.

B. OVERVIEW OF INFORMATION THEORY

The theory and notation in this section is taken primarily

from Garner (1962). Additional notation and theory comes from

Kantowitz and Sorkin (1983).

1. Information Theory Background

Information theory is derived from communications

theory and is motivated by a desire to quantify information as

a measurable commodity. By definition, when communications

occurs, information must be transmitted. Note that,
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regardless of how information is measured, the measurement

tells nothing of the value of the information. Value is

determined by the recipient or user of the information.

Before the amount of information can be explored, the basic

properties of information must be examined.

Information exists in a message or communication only if
there is an a priori uncertainty about what the message
will be. (Garner, 1962, p. 3)

In other words, if the receiver is already aware of the facts

contained within the message, then no information has been

received. If it is raining outside and the receiver is gazing

out the window, he will learn nothing if someone tells him it

is raining. He has, therefore, received no information

because he has no uncertainty about whether it is raining or

not. However, if he is told that the total rainfall over the

past hour was 0.15 inches, information has been transmitted

because he was not previously aware of the amount of

rainfall--he was uncertain.

Furthermore, the amount of transmitted-information is

determined by the amount of uncertainty "...or, more exactly,

it is determined by the amount by which uncertainty has been

reduced." (Garner, 1962, p. 3) An example illustrates this

point. Consider a fair coin that is to be tossed. Before the

coin is tossed, there is no a priori knowledge of the outcome

since the outcome of a fair coin toss is equally likely to

heads as tails i.e., we are completely uncertain. After the

coin has been tossed, the outcome is known, the uncertainty
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has been removed, and information has been gained. If there

were to be multiple tosses of the coin, there would be that

much more uncertainty about the overall outcome--the total

number of heads for example. One toss of a fair coin results

in the resolution of a situation that had two possible

outcomes, while two tosses of a fair coin has four possible

outcomes, and three tosses has eight possible outcomes.

Specifying information in this way is cumbersome, so a simpler

method was developed. The measure must "satisfy the two

conditions that (a) it is monotonically related to the number

of possible outcomes and, (b) each successive event adds the

same amount of uncertainty and thus makes available the same

amount of information." (Garner, 1962, p. 4) This a

logarithmic relationship and for reasons of proportionality,

the base was chosen to be two. The following equation gives

a basic measurement of information:

(1) U = log 2m

where U is the measure of uncertainty and, therefore,

information, and m is the number of possible outcomes. The

unit of measure is the bit, commonly used in communications

and computer technology. So, if a fair coin is tossed, one

bit of information has been gained because one bit of

uncertainty has been resolved. Likewise, if eight coin tosses

are made eight bits of information are gained. (Note that for
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eight coin tosses, there are 256 possible outcomes and U =

log2(256) = 8.)

2. Developing a Concept of Information Measurement

The next step in developing the information

measurement concept is to extend the process to situations

where the possible outcomes are expressed as probabilities

rather than a strict enumeration. The probability of

occurrence of any event is the reciprocal of the number of

possible outcomes, so equation (1) becomes:

(2) U = log2(1/p(x)) = -log 2p(x)

where p(x) is the probability of the outcome of x.

To sum up the total information contained over a long

term and over several categories of events, a weighted average

must be taken. The equation which expresses the average

uncertainty associated with a discrete probability

distribution is given by:

(3) U(x) = -Zp(x) log 2p(x).

This concept can easily be extended to two variables

x and y. In this case, the concern is with the joint

occurrence of events x and y. The uncertainty involved in

this joint occurrence is found by:

(4) U(x,y) = -Ep(x,y) log 2p(x,y).

This is referred to as the joint uncertainty, and p(x,y) is

the joint probability, or probability of x and y occurring.

Typically, the variables, x and y, are correlated;
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consequently, p(x,y) t p(x)p(y). The uncertainty that would

exist if x and y were not correlated is a value that has

utility in this development, so it is presented here. It is

referred to as maximum joint uncertainty because it is the

highest level of uncertainty possible with the given values of

p(x) and p(y).

(5) U.(x,y) = -EP(x,y)log 2P(x,y)

The difference between maximum joint uncertainty and

joint uncertainty is called contingent uncertainty (the

uncertainty contingent on the correlation of the variables)

and is represented by U(x:y).

(6) U(x:y) = U.(x,y) - U(x,y)

U(x:y) will also be referred to as INFO in this paper. As

correlation between x and y increases the value of joint

uncertainty decreases, so contingent uncertainty would

increase thus illustrating that it represents the amount by

which uncertainty is reduced by the correlation. In other

words, if joint uncertainty is maximum (no correlation), then

contingent uncertainty is zero--uncertainty hasn't been

reduced at all. Conversely, if joint uncertainty is minimum

(high degree of correlation), then contingent uncertainty is

high--uncertainty has been reduced a great deal by

correlation. According to Garner, "one of the most common

uses of the contingent uncertainty is as a measure of

information transmission." (Garner, 1962, p. 63)
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C. INFORMATION MEASUREMENT EXAMPLE

To illustrate the use of information theory in quantifying

the available information contained within the stimulus-

response pairs in a confusion matrix, a sample set of

calculations is presented here. The data used comes from the

simple confusion matrix presented earlier in Table 1.

(Clarke, 1957, pp. 715-720)

The first calculation is to determine the joint

uncertainty, U(x,y), using equation (4); however, to find the

joint uncertainty, the probability of each cell, the log2 of

that probability, the negative of the product of these two

values, and, finally, the sum of these products are needed.

In fact, this sum is the joint uncertainty. The values shown

in Table 3 are in the form -p(x,y)log2p(x,y). Note that if a

cell had a zero probability, it would not require any further

calculation; the p(x,y)log 2p(x,y) is evaluated as zero. The

joint uncertainty is the sum of all the values in Table 3.

This sum, U(x,y), is 4.5436.

The next step is to calculate the maximum joint

uncertainty, U.(x,y) equation (5). To find this value,

similar calculations to those done for joint uncertainty are

required, but for maximum joint uncertainty, each row and

column are treated individually. The pertinent row and column

values required for the maximum joint uncertainty calculation
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are shown in Table 4. As Table 4 illustrates, the maximum

joint uncertainty, U (x,y), is 5.1483.

TABLE 3 CALCULATING JOINT UNCERTAINTY

pa ta ka fa Oa sa

pa 0.2625 0.1868 0.1407 0.1184 0.0557 0.0216
ta 0.2127 0.2251 0.1820 0.0870 0.0529 0.0329
ka 0.1681 0.2764 0.1858 0.0308 0.0638 0.0403
fa 0.0962 0.0216 0.0216 0.3503 0.1413 0.0576
Oa 0.0647 0.0576 0.0482 0.2232 0.2347 0.1618
sa 0.0179 0.0814 0.0576 0.0433 0.2073 0.3137

TABLE 4 CALCULATING MAXIMUM JOINT UNCERTAINTY

Stimulus/ p(x) -p(x) Log2p(x)
Response
Row pa 0.1667 0.4308
Row ta 0.1667 0.4308
Row ka 0.1667 0.4308
Row fa 0.1667 0.4308
Row Oa 0.1667 0.4308
Row sa 0.1667 0.4308

Column pa 0.1788 0.4441
Column ta 0.1907 0.4559
Column ka 0.1233 0.3724
Column fa 0.2077 0.4709
Column Oa 0.1558 0.4179
Column sa 0.1437 0.4022

Total: 5.1483

Information transmitted, also called contingent

uncertainty, U(x:y), is found by evaluating equation (6).

Therefore, information transmitted by the six S-R pairs

evaluated is:

U(x:y) = U.(x,y) - U(x,y) = 5.1483 - 4.5436 = 0.6047 bits
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V. MAXIMAL INFORMATION SUBSETS

A. THE CONCEPT OF MAXIMAL INFORMATION

Using the calculations from the previous chapter,

information transmitted could be calculated for any number of

S-R pairs. For example, in the sample calculations at the end

of Chapter IV, all of the S-R pairs were used to find

information transmitted. If only two of the six S-R pairs

were required for a specific application, the question is

which two should be used. From the perspective of

transmitted-information, it makes sense to use the two S-R

pairs that transmit more information combined than any other

two S-R pairs combined. Using the same data from the previous

example, the following table shows the transmitted-information

(the U(x:y) column) by all possible combinations of two S-R

pairs.

From the data in Table 5, it should be obvious that the

choice of S-R pairs pa & sa results in the maximal

transmitted-information for a subset size of two. If the

objective is to maximize transmitted-information using only

two of the S-R pairs, these two S-R pairs should be selected

since, together, they transmit 0.8035 bits of information.
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TABLE 5 TRANSMITTED-INFORMATION FOR SUBSETS OF SIZE TWO

S-R Pairs U(x:V)
pa & ta 0.0159
pa & ka 0.0467
pa & fa 0.3115
pa & Oa 0.4547
pa & sa 0.8035
ta & ka 0.0036
ta & fa 0.5186
ta & Oa 0.4534
ta & sa 0.4924
ka & fa 0.6135
ka & Oa 0.3964
ka & sa 0.4699
fa & Ga 0.0826
fa & sa 0.6450
Oa & sa 0.0595

Obviously, this method of determining the optimal subset

for transmitted-information would become extremely tedious if

the number of original S-R pairs became much bigger than four;

a very real probability. The number of subsets of size s

selected from a group of size n that must be evaluated to

perform a complete enumeration is found using the well known

formula for combinations:

n!
(n-s)!s!

For example, if the original number of S-R pairs is ten (n=10)

and a subset of five pairs is desired (s=5), then 252 subsets

must be investigated since there are 252 subsets of size five

when selecting from a group of ten. Furthermore, the Moore

data set (25 S-R pairs) has 177,100 subsets of size six which
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Moore was attempting to select. Performing these calculations

by hand would be, as previously stated, extremely tedious and

time consuming. With the computer technology available today,

there should be an easier method. The method of interest here

not only lets computer software calculate the information

values, but also allows the software to select the optimal

subset. This is possible using a software package such as

GAMS. The next section discusses the development of a GAMS

model for the purpose of selecting maximal transmitted-

information subsets.

B. DEVELOPING A MODEL FOR MAXIMAL TRANSMISSION OF INFORMATION

The confusion matrix form constituted the guiding alement

in the development of the model. Using the values from this

confusion matrix, equation (4) is transformed into:

(7) U(s,r) = -Zi [(CjT)lIo2(Cj/T)]

where T = EinCi. Equation (5) is transformed into:

(8) U.(s,r) = -Z 1Slog2Si - EA-Rlog 2R

where Si is the probability of a stimulus occurring in row i

and R is the probability of a response occurring in column j.

(Note: s and r will be used in place of x and y as arguments

in model equations from this point on while x and y will be

used to represent binary or "switch" variables.)

This leads to a restatement of equation (6) as

(9) INFO = U(s:r) = -Z 1Silog2Si - Z,0log 2R. -

ZESJC (C /T) log 2(Cj/T) J
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The model developed must be capable of selecting a subset

of these S-R pairs so as to maximize U(s:r). The simplest way

to use binary variables in a case like this is to multiply

each occurrence of a C, by a binary variable. Actually, this

case requires each C, to be multiplied by two binary

variables, xi and x,, because each value of Cj selected must be

selected by a stimulus variable and a response variable;

therefore, each occurrence of C, is multiplied by xjxj to

control its inclusion or exclusion in the selected subset.

So, if in Figure 1, S-R pairs I and 3 are selected, then all

C contained in rows 1 and 3 that are also contained in

columns 1 and 3 will be used in the calculations. These

values are CH, C,3, C31,and C33, and each of these values needs

to be multiplied by xIx 3, where both x, and x3 are equal to one

and all other xjx3 pairs are equal to zero. If this is true,

then only the desired values of C will be included in the

selected subset.

So far, the development of the model has been quite

simple. However, on closer examination, equation (9) now

contains binary variables and nonlinear terms, a condition no

solver can currently handle. In fact, there are

nonlinearities in each of the three terms in equation (9)

causing a complete failure of the model as developed thus far.

Approximation is the next logical step. If stimuli are

assumed to be equiprobable, and subsequently responses are
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also considered equiprobable, then the U. term can be

considered constant, and can thus be removed from the model.

Is this a reasonable approximation? Perhaps. The original

premise in information theory was that this is the maximum

possible uncertainty given the row and column probabilities,

so although U,. is not, in fact, a constant, it is not

completely unreasonable to approximate this value as a

constant for a given subset size. Therefore, U, will be

considered constant for this model and empirical testing will

determine if the approximation is reasonable or not. Since

the objective of the model is to find an optimal subset, the

quantity used to determine optimality is not as vital as the

actual determination of the optimal subset. Therefore, rather

than calculate a constant to be used in place of U., U. will

simply be dropped from the equation. Information transmitted

by the selected subset can be found precisely using post-solve

calculations in the GAMS model.

The approximation reduces the equation to:

(10) INFO = -ZiZj[ (xixjCij/T) log 2(xixjCj/T)]

Notice that this equation is actually a form of equation (4).

In other words, the model has been reduced to the joint

uncertainty equation. If equation (6) is examined, it is

apparent that in order to maximize U(s:r) (information

transmitted), U(s,r) (joint uncertainty), must be minimized,

assuming U. is constant. A problem still exists in this
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model because it is still nonlinear and contains binary

variables. Nonlinearities exist in the log term (taking the

log of a binary variable) and also in the xxCO/T term because

T contains binary variables also. Recall, T = ZijnCj but all

C, terms must be multiplied by binary variables, so division

of binary variables also exists. In fact, the product, xjx,

is another source of nonlinearity. These problems will be

dealt with one at a time.

Using the same assumptions used to remove the U., the T

term can be approximated by using a scaled version of the

total for the entire set rather than the true total for the

selected subset. To produce a value that is properly scaled

the T term is scaled by the value s/n where s is the desired

subset size and n is the size of the original set. As with

the previous approximation, this approximation assumes the

matrix is made up of equiprobable elements.

The equation has now been reduced to:

'T Sn n

Now, the argument of the log term can be treated as a constant

term in the summation and thb binary variables can be moved

outside of the log term. This step allows the log term to be

evaluated as a pre-solve calculation. In fact, when the

binary variables are removed from the argument of the log

46



term, the entire equation becomes the summation of constants

that are chosen by binary variables. The confusion matrix

can, therefore, be converted to a matrix of probabilities

further transformed by the log2 . In the model these values

are represented by the parameter LP(I,J) and the model is now

reduced to

(12) INFO = ZiLPixi x

where the LP, terms are determined by

(13) LPj = p1 log2(l/pi) all i,j

and each pj term is determined by

(14) p, = nC,,/sT all i,j

There is still a problem with the product xi x but that is

easily rectified. Rather than multiply the terms xi and x,, a

new term, y,, is introduced. The relationship between y1 and

the x terms is given in the following linear equation which is

included as part of the GAMS model

(15) xi + Xi - yj 1 for all C > 0; i j

where xi and x, are binary variables. Because the goal is to

minimize the objective function, INFO, yj will be zero

whenever possible. If a S-R pair is selected, the value of y

will be forced to a value of one by equation (15). Since

these conditions exist, y, doesn't have to be a binary

variable, it merely needs to be limited to positive values.

To make the solver's job easier, it is best to limit the

number of binary variables as much as possible.
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To further aid the solver in its calculations, the matrix

was triangularized in the objective function. This was

achieved by selecting the main diagonal values, LP , then

adding the values of LP, and LP1i. Neither of these latter

values would ever appear in solution exclusive of the other so

they need not be treated separately. This also allows the y,

values, and subsequently the xi and x, values, to be limited to

only those where i : j, i.e., the matrix is upper

triangularized. So, an additional group of variables was

avoided. The fewer variables in the model, the easier time

the solver will have in optimizing.

Subset size desired was controlled by the following

equation also included in the model

(16) ZiX i = S

where xi is one if S-R pair i is included in the subset, and

zero otherwise.

A further embellishment was to place the model in a loop

so all subset sizes could be examined for any given set of

data using only one GAMS run. Some sample data sets are

included with this report as are the associated GAMS output

data listings. The data set, a separate file called by the

model using an INCLUDE statement, shows the run index starting

at RL ')2 rather than RUN01. This convention was used to

simplify data analysis--run number equals subset size.
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The final addition to the model was the set of post-solve

calculations which calculate the actual information

transmitted by the selected subset. The calculations were

included because the model was designed to minimize a value

that didn't accurately represent information transmitted due

to approximations. The actual values of information

transmitted would become useful in a comparison to the known

optimal values that were empirically calculated during the

analysis that took place after the model was developed and

run. An additional post-solve calculation was included to

show the values of confusion and recognition for the selected

subset. These calculations were taken from the

Confusion/Recognition Model and were included for use in

comparison and evaluation of model performance in the analysis

chapter. The entire model, with a sample data file, is

included in Appendix A.

C. RUNNING THE MODEL

The model was run on 17 data sets. Most data sets

contained ten or less stimuli; one contained 20, and one

contained, 25. The Moore and Clarke confusion matrices were

shown in Tables 1 and 2. The remaining confusion matrices are

shown in Appendix B.

The solver had no trouble at all with the 15 smaller size

data sets including the Bowen data set (20 S-R pairs);

however, on the Moore data set (25 S-R pairs), the solver
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began to bog down at subsets of size 11. Up through size 10,

the solver was reasonably quick, but above this level, the

number of branch and bound iterations used by the solver

exceeded 25,000 causing excessive time for solution. The

model was modified to allow for more iterations and more

solution time. Eventually, a more powerful solver called XA

was made available in the operations research computer lab.

Solution time with the XA solver was never a problem. The

longest solution times were between 15 and 20 minutes for

subsets of size 12, 13 and 14 for the Moore data set. The XA

solver never failed to return a solution. The output data

from the Transmitted-Information Model can be seen, along with

data from the other models discussed in Chapter VI, in tabular

and graphical forms in Appendix E.
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VI. ANALYSIS OF RESULTS

A. DILEMMA: HOW TO ANALYZE THE DATA

One of the problems with collecting and collating data is

finding a basis for comparison. Since the model attempts to

identify the optimal subsets of size s from a set of size n,

it would be very helpful to know what the optimal subsets are.

First of all, when discussing human performance or human-

system interface, is there a truly optimal answer? That

depends on how optimal is defined for the situation. In this

work, optimal is considered to be the best analytical answer

(subset) given the data set. This assumes the data collection

experiment was properly conducted without bias. Given the

data, the optimal subset will then depend on the objective

function used to gauge optimality. Theise used confusion

and/or recognition. The measure of interest in this work is

transmitted-information. To accomplish a comprehensive

analysis, the results of the information model were examined

with respect to the optimal transmitted-information value and

with the optimal subsets selected by the Confusion/Recognition

Model.
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1. The Optimal Value of Transmitted-Information

If the optimal transmitted-information level for a

given subset size is not known, how can the information model

be evaluated? It was decided that an exhaustive enumeration

would be attempted to find the optimal transmitted-information

value, and the corresponding subset, for each subset size in

each data set. The enumeration was carried out by a computer

program that was written in Turbo Pascal (Borland

International, 1987). The complete Turbo Pascal program

listing is included in Appendix C with a sample input data

file. This routine will be referred to as the enumeration

scheme.

The program had to be capable of calculating the value

of information transmitted by each possible combination of S-R

pairs for each subset size. A literature search turned up a

Pascal procedure designed specifically for the purpose of

complete enumeration of a combinatorial problem. The

recursive procedure shows up in the listing in Appendix B as

the procedure called COMBS and is credited to Rohl (1983).

The program simply calculates the information

transmitted by each possible combination of a given size and

saves the five largest values, with the associated subset, in

an array. The highest output value for each subset size (the

optimal value of transmitted-information) and the

corresponding subset chosen by the enumeration scheme are

shown in the tables and graphs in Appendix E.
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Initially, there were problems encountered when trying

to run the enumeration scheme on the Moore data set. The

program had to process as many as 5,200,300 combinations for

both subsets of size 12 and 13. The solution time would have

exceeded two weeks on the personal computer that was initially

used (an Intel 80386-based 33MHz personal computer with math

coprocessor). A more powerful Intel 80486-based personal

computer was eventually used and provided an optimal subset

for all subset sizes in less than 48 hours.

2. The Optimal Value of Confusion/Recognition

In addition to the optimal values returned by the

enumeration scheme, the subsets selected by the Transmitted-

Information Model are compared to the subsets selected by the

Confusion/Recognition Model. In order to conveniently use the

Confusion/Recognition Model, it had to be modified to accept

various data sets. The model was put into a form nearly

identical to the Transmitted-Information Model. Additionally,

post-solve calculations were added to allow for simple model

comparisons. The modified version of the

Confusion/Recognition Model is included in Appendix D with a

sample input data file.

B. AN EXAMINATION OF THE DATA

The primary emphasis in this data analysis will be on the

numbers: information transmitted and confusion/recognition.

Since these numbers are reflective of the subsets selected,
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the subsets selected will only be discussed when necessary.

Note that the tables in Appendix E include the output data

from all three models for comparison. Also included in the

tables are the selected subsets for each data set and size.

1. Information Transmitted

The tables showing the values of information

transmitted show the value from the enumeration scheme in the

left column since it is the known optimal value. The next

column shows the value from the Transmitted-Information Model

(the model of primary interest), and the final column shows

the post-solve value from the Confusion/Recognition Model.

A thorough examination of the information transmitted

tables reveals a couple of trends. First, the value from the

enumeration scheme is always the largest value whether it is

singularly large, or equally as large as the value for one of

the other models. This was expected since the enumeration

scheme was designed to return the optimal value. Next, the

Transmitted-Information Model returned a higher information

transmitted value than the Confusion/Recognition Model in only

25 cases (there are a total of 149 cases). The

Confusion/Recognition Model returned a higher information

transmitted value than the Transmitted-Information Model in 30

cases. In all other cases, these two models returned the same

value. In 80 cases, all three models returned the same value;

consequently, the enumeration scheme returned a higher value
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than both the Confusion/Recognition Model and Transmitted-

Information Model in the 69 remaining cases.

Lastly, in most of the cases where these models

returned different values, the values were not significantly

different from the standpoint of absolute numbers. Typically,

the amount of deviation between values was less than ten

percent; however, there were several cases where the

difference was greater with values as high as 25% relative

difference. The significance of the difference between the

values is up to the individual user and the associated

application. For some users, the graphs in Appendix E give a

better visual presentation of the potential significance

between results returned the three models.

2. Confusion/Recognition

The tables in Appendix E also include the

confusion/recognition values for the optimal subsets selected

by each model or scheme. The confusion/recognition values

listed for the Confusion/Recognition Model are the optimal

solution results from the model. The confusion/recognition

values listed for the Transmitted-Information Model and the

enumeration scheme are from post-solve calculations based on

the maximal transmitted-information subsets selected by these

models. The data is listed in the form:

confusion recognition.
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Recall that the primary objective is to minimize confusion,

and the secondary objective is to maximize recognition. This

data is also shown in graphical form in Appendix E.

A thorough examination of the confusion/recognition

tables also reveals a couple of trends. First, as expected,

the Confusion/Recognition Model had either the best

confusion/recognition values or values equally as good as the

other models.

The next observation has the enumeration scheme giving

a better confusion/recognition value than the Transmitted-

Information Model in 24 cases, while the Transmitted-

Information Model has better values in 22 cases. There were

73 instances where all three models gave the same optimal

result (again, there were 149 total cases). So, in 73 cases,

the Confusion/Recognition Model alone gave the optimal value.

Lastly, as with the information transmitted values,

the amount of deviation in the results that were not equal did

not appear to be significant from an absolute value standpoint

in most cases. The importance of absolute optimality is

determined by the application and the user of the data.

C. THE BOWEN DATA: A CLOSER LOOK

The Bowen data is of special interest because Bowen and

his associates selected what they felt were the optimum

subsets for subset sizes two through ten. Based on the

article, their basis for selecting optimal subsets was
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confusion/recognition. Though these terms were not

specifically used in this way, recognition was discussed, and

the procedures used in the experiment did, in fact, base

selection on the degree of recognition and confusion. For

comparison purposes, the Bowen data is included in Table 52.

(Bowen and others, 1960, pp. 28-30)

A quick scan of Table 52 reveals that Bowen and associates

selected subsets very close in composition to those selected

by the three models used in this thesis work. One of the most

significant differences lies in their reluctance to use any of

the symbols numbered higher than ten (except for symbol 14,

the square). They didn't believe the higher numbered symbols

were necessary because, as the number of the symbol increased,

so did the degree of difficulty in recognizing the symbol.

They did include the square in some of his optimal subsets,

possibly due to a comfortable familiarity with the

traditional, simple square. (Bowen and others, 1960, p.29)

The three models examined in this thesis produced results

that were better, or as good as, the results of Bowen's

experiment based on the indices used to evaluate optimality.
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VII. CONCLUSIONS AND RECOMENDATIONS

A. CONCLUSIONS

Before interpreting the results just discussed, it would

be prudent to pause and examine the implications of drawing

conclusions. Since human factors and human-system interface

rely on human performance or human-system interaction, they

are not precise sciences. Human interactions can be motivated

by factors not easily integrated into formulas or models.

Factors such as instinct, bias, and emotions are difficult, if

not impossible, to predict. Some human reactions and

interactions are fairly predictable, and as a result, human

factors is a technical field of study. Still, the intangibles

make dealing with some human factors issues difficult.

However, the technology to bring optimal, or near optimal,

solutions to problems such as these is available and provides

a springboard for dealing with an inexact science.

What is optimal performance in the human factors

environment? Or, what is the optimal solution to a problem

dealing with human-system interface? As previously stated,

the answers to these questions are best answered by the

experts analyzing problems on a case by case basis. Fisher

(in press) discusses two broad classes of optimization

studies. In Type I studies, physical characteristics of
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design that affect optimal performance are the focus. In

Type II studies, "...the goal is to identify the subset of

design elements which optimize performance." The area of

study covered by this thesis is Type II. He further discusses

three classes used to organize the Type I and Type II studies:

empirical, theoretical, and analytical. When there is a

question concerning what optimality means or how it is to be

used, Fisher's characterizations of optimization studies may

provide an answer.

In this work, the objective was to develop a tool that a

designer could use in system or concept design. The models

developed simplify and standardize the selection of subsets

that are optimal with respect to a given objective and given

confusion matrix data. This brings up another potential

problem area--the question of validity. Certainly, there is

a desire to know if the models are valid. Sanders and

McCormick (1987) discuss several types of validity: face,

content, and construct. Face validity is concerned with

whether a model appears to do what it was intended to do.

Content validity pertains to whether the domain of interest is

adequately represented or sampled. Construct validity asks

whether the underlying essence of the actual problem is being

addressed. They also discuss the concept of contamination in

the measurement. Attention to these concepts early in the

modeling process will help answer some of the questions that

commonly arise such as: Was the data collection method
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sound? Was the experiment free from bias and noise? Were the

test subjects qualified to perform as test subjects? Were

they a properly diverse or properly restricted group

(depending on the requirements)? Were they representative of

the group affected by the outcome of the experiment?

These are important questions that can not be answered by

examining the data sets. The experiment must be carefully

controlled throughout. The models can only produce solutions

based on the data given. The models can not anticipate, nor

can they make judgements concerning the validity of the data.

The motivation behind this disclaimer is to ensure that

more is not made of the models' capabilities than is

warranted. The models will merely give a mathematically

optimal--or near optimal, as the case may be--solution to the

problem data given. With these ideas in mind, conclusions

about the models' performance will be presented.

1. The Transmitted-Information Model

The Transmitted-Information Model developed in this

thesis performed fairly well, but it did not consistently

produce better results than the Confusion/Recognition Model.

For information transmitted, the Confusion/Recognition Model

actually performed better. As mentioned in the previous

chapter, the Transmitted-Information Model returned a higher

value of information transmitted than the

Confusion/Recognition Model in 25 of 149 cases, while the
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Confusion/Recognition Model returned a higher value in 30

cases. So, for these data sets, the Confusion/Recognition

Model does a better job of maximizing information transmitted

than the Transmitted-Information Model even though this is not

the objective of the Confusion/Recognition Model. This is due

to the unfortunate fact that the true information theory

equations could not be fully implemented in the model because

of their inherent nonlinearity. Recall that, the equations

were boiled down to a single term. Considering this, the

model performed quite well.

An interesting development was the performance of the

program written in Turbo Pascal: the enumeration scheme.

This model was intended as a check for the Transmitted-

Information Model and was expected to return strictly better

solutions since the Transmitted-Information Model was an

approximation. But, it was anticipated that this program

would use an inordinate amount of CPU time making it

impractical for routine use. This was not the case.

The enumeration scheme solved the 15 smaller matrices

to optimality in less than a minute. The Bowen data required

approximately 24 hours to solve all possible subset sizes on

an Intel 80386-based machine running at 33 MHz equipped with

math coprocessor. Unfortunately, the attempt to solve the

Moore data set was terminated after 24 hours of processing

when it became evident that seven to ten days was going to be

required for a complete solution.
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A later attempt to process the Moore data set on an

Intel 80486-based machine running at 33MHz proved more

successful. The optimal solution for all subset sizes was

completed in less than 48 hours. Solution times will probably

improve dramatically within the next few years as technology

pushes the speed of personal computers higher and higher.

Another avenue of approach is processing on massively parallel

computers capable of simultaneous processing on as many as

64,000 processors. This would be a very logical strategy for

sets larger than the Moore set.

The solution times for the Transmitted-Information

Model, using the previously mentioned 80386-based PC and GAMS

version 2.25 with the XA solver, were very reasonable; no

subset size for any of the data sets took more than about 15

minutes to solve. The longest solution times occurred for the

Moore data set at subsets of size 11 through 14. The smaller

data sets took on the order of one minute to provide solutions

for all possible subset sizes.

Another interesting discovery was made in a review of

the tables and is immediately obvious when viewing the graphs.

In several data sets, as the subset size increased, the

information transmitted began to decrease at some point. This

can be interpreted as a decrease in system efficiency, or some

may view it as information overload. Examining the

confusion/recognition values will not reveal this system
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degradation in the way the Transmitted-Information Model or

enumeration scheme do.

2. The Confusion/Recognition Model

The Confusion/Recognition Model outperformed the

Transmitted-Information Model for both maximal information

transmitted and minimal confusion with maximum recognition.

However, the enumeration scheme outperformed the

Confusion/Recognition Model for maximal information

transmitted and did provide an insight into the previously

mentioned reduction in efficiency. The solution times for the

Confusion/Recognition Model were very reasonable, being about

the same as those mentioned above for the Transmitted-

Information Model.

B. RECOMMENDATIONS

Which model is best? It would be very nice to give a

simple answer to this question, but this is not possible. One

factor that influences the model of choice is the desires of

the model user. Some may feel more comfortable with the

information theory approach, while some may prefer the more

intuitive confusion/recognition approach.

This brings up a point made by Wickens in his 1984 text.

He lauds information theory as being a wide ranging theory

"applicable across a wide variety of different dependent

variables." (Wickens, 1984, pp.65-66) He later mentions

criticisms of this theory including "limitations in the
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sensitivity of the information measure and limitations in its

application to human performance." (Wickens, 1984, p.66)

The second criticism dealing with applicability to human

performance was discussed previously. The first criticism

deals with the difference between consistency and correctness.

Information theory will produce the same transmitted-

information value for a situation where there is perfect

recognition and where there is perfect confusion. As he

points out, information theory must be used the with full

awareness of the user. If the user does not check a model's

solution, a "perfectly bad" subset may be used with the

perception that it is "perfectly good". (Wickens, 1984, p.66)

If the information theory approach is chosen, the

enumeration scheme should be used if possible since it

provides optimal solutions with respect to maximal

transmitted-information in all cases. If the data set is too

large for the enumeration scheme and information theory is the

desired approach, the Transmitted-Information Model may

provide adequate results, although it will give sub-optimal

results in many cases. The Transmitted-Information Model is

not highly recommended.

Instead of the Transmitted-Information Model for larger

data sets, the Confusion/Recognition Model is recommended. It

bases optimality on an objective other than information

transmitted but has been seen to provide better results with

respect to information than the Transmitted-Information Model.
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If the user wants to see any possible reductions in efficiency

or information overloads, the Confusion/Recognition Model can

produce the equivalent information transmitted value as a

post-solve calculation. This data will reveal the desired

insight as it did in this thesis. The Confusion/Recognition

Model also bases optimality on a more easily grasped concept.

For the average user, confusion and recognition may be more

intuitive concepts. Also, recall that the time required for

the enumeration scheme to run large data sets will become more

tolerable as technology increases the speed of personal

computers.

One of the goals of this thesis was also to determine if

information theory and confusion theory would select the same

optimal subsets. They didn't. The selected subsets were not

different by a large degree. For this reason, the

confusion/recognition values returned by the three models were

not markedly different, nor were the transmitted-information

values returned b; the three model markedly different. In

closing, either the Confusion/Recognition Model or the

enumeration scheme will produce optimal results that are

usable for most practical applications.
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APPENDIX A INFORMATION THEORY MODEL (GANS)

GAMS model for maximizing transmitted-information is presented

here in edited form without comments or post-solve

calculations so the entire model can be viewed at once. The

full model used to generate the data in this thesis follows

immediately afterward.

$TITLE INFORMATION THEORY MODEL
SETS I stimuli ;
ALIAS(I,J);
SCALAR S size of the subset to be selected ;
$INCLUDE SHEEHAN.DAT
SCALAR T total number of responses in matrix;
T = SUM((I,J), C(I,J));

PARAMETER P(I,J)
P(I,J) = ( CARD(I) * C(I,J) ) / (S* T)

PARAMETER LP(I,J) logarithmic probability matrix;
LP(I,J) $ P(I,J) = P(I,J) * (LOG(I/P(I,J))/LOG(2));

BINARY VARIABLE
X(I) selected stimuli in subset ;

POSITIVE VARIABLE
Y(I,J) Indicator for joint selection of stimuli

FREE VARIABLE
INFO objective function value ;

EQUATIONS
OBJFUNC define objective function
SUBSET ensure proper subset size
YDEF(I,J) set y to one if i and j selected ;

SUBSET.. SUM(I, X(I)) =E= S ;
YDEF(I,J) $ (ord(i) lt ord(j)).. X(I) + X(J) - Y(I,J) =L= 1;
OBJFUNC.. SUM(I, LP(I,I) * X(I) )

+ SUM((I,J) $( ord(i) lt ord(j) ),
Y(I,J) * (LP(I,J) + LP(J,I)

=E= INFO ;
MODEL INFORM /ALL/;
LOOP(L,
SOLVE INFORM USING MIP MINIMIZING INFO ;
DISPLAY X.L ;
S = S + 1;
LNOW(L) = NO;
LNOW(L + 1) = YES );
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The complete model follows:

STITLE INFORMATION THEORY MODEL
$offupper offsymxref offsymlist

* By Mike Sheehan 11/91 (Revised: RER 13 Nov 91)
* 2nd revision Mike Sheehan 12/91

OPTIONS
limrow = 0
limcol = 0
solprint = off
optcr = 0.0
optca = 0.0
iterlim = 100000
reslim = 100000
integer2 = 122
integer1 = 1

SETS I stimuli ;

ALIAS(I,J);

SCALAR S size of the subset to be selected ;

$INCLUDE SHEEHAN.DAT

SCALAR- T total number of responses in matrix;

T = SUM((I,J), C(I,J));

PARAMETER P(I,J) matrix of probabilities of each ;
*confusion value

P(I,J) = ( CARD(I) * C(I,J) ) / (S* T)

PARAMETER LP(I,J) logarithmic probability matrix;

LP(I,J) $ P(I,J) = P(I,J) * (LOG(I/P(I,J))/LOG(2));

BINARY VARIABLE
X(I) selected stimuli in subset ;

POSITIVE VARIABLE
Y(I,J) Indicator for joint selection of stimuli

* y(i,j) is 1 if both x(i) and x(j) are 1 else y(i,j) is 0
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FREE VARIABLE

INFO objective function value ;

EQUATIONS

OBJFUNC define objective function
SUBSET ensure proper subset size
YDEF(I,J) set y to one if i and j selected ;

SUBSET.. SUM(I, X(I)) =E= S

YDEF(I,J) $ (ord(i) it ord(j)).. X(I) + X(J) - Y(I,J) =L= 1;
*where i is less than j ensure y(i,j) is 1 only if both x(i)
*and x(j) are 1, for i greater than j is redundant

OBJFUNC.. SUM(I, LP(I,I) * X(I) )
*sum values of LP on main diagonal for chosen stimuli

+ SUM((I,J) $( ord(i) it ord(j) ),
*sum values of LP where i is less than j and the i and j
*stimulus has been chosen

Y(I,J) * ( LP(I,J) + LP(J,I)
*sum values from LP matrix cells where i=j and j=i, this is
*equivalent to lower triangularizing the matrix (adding values
*from the i,j cell and j,i cell where i=j and j=i)

=E= INFO ;

MODEL INFORM /ALL/;

PARAMETER

CONFUSION(*,*) Confusion Among Selected Stimuli
ENTROPY(*,*) Entropy Among Selected Stimuli
NEWTOT total of all confusion values in selected

* subset matrix;
STIMPROB(I) probability of the i row in the

* selected confusion matrix
RESPPROB(J) probability of the j column in the

* selected confusion matrix
STIMINFO information derived from the stimuli

* in the chosen subset
RESPINFO information derived from the responses

* in the chosen subset
NEWLPMAT(I,J) logarithmic probability matrix using

* values from chosen subset
JOINTINFO joint information transmitted based on

* chosen stimuli
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TOTALINFO total information transmitted based on
* chosen stimuli (intersection of stim & resp info)

RECOGNITN value of recognition for selected subset
* based on Theise Mdl 3 included for comparison and
* evaluation

LOOP (L,

SOLVE INFORM USING MIP MINIMIZING INFO;

CONFUSION(I,J) = C(I,J) $( X.L(I) * X.L(J));

ENTROPY(I,J) = LP(I,J) $( X.L(I) * X.L(J)

NEWTOT = SUM((I,J), C(I,J)
$( X.L(I) * X.L(J) )

STIMPROB(I) = SUM(J, C(I,J)
$( X.L(I) * X.L(J) AND C(I,J) )/NEWTOT)

RESPPROB(J) = SUM(I, C(I,J)
$( X.L(I) * X.L(J) AND C(I,J) )/NEWTOT)

STIMINFO = SUM(I $ X.L(I),
STIMPROB(I) * (LOG(l/STIMPROB(I))/LOG(2)));

RESPINFO = SUM(J $ X.L(J),
RESPPROB(J) * (LOG(1/RESPPROB(J))/LOG(2)));

NEWLPMAT(I,J) $( X.L(I) * X.L(J) AND C(I,J))
= C(I,J)/NEWTOT *(( LOG(NEWTOT/C(I,J)))/LOG(2));

JOINTINFO = SUM((I,J), NEWLPMAT(I,J) $( X.L(I)
* X.L(J) EQ 1 ));

TOTALINFO = STIMINFO + RESPINFO - JOINTINFO;

RECOGNITN = SUM(I $ X.L(I), C(I,I) )

DISPLAY X.L, RECOGNITN, TOTALINFO;

S = S + 1;

LNOW(L) = NO;

LNOW(L + 1) = YES )
*end of loop
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Sample input data file:

*WILPON9A.DAT - data file

SETS

I stimulus (rows) /S0 * S9 /
L model runs / RUN02 * RUN09 /;

SCALAR S size of the subset to be selected /2/ ;

TABLE C(I,*) response j to stimulus i

SO S1 S2 S3 S4 S5 56 S7 S8 S9
SO 63.8 0.0 12.5 0.0 5.7 0.0 3.6 6.8 0.0 0.0
S1 0.0 76.2 0.0 0.0 13.4 5.6 0.0 0.0 0.0 0.0
52 0.0 0.0 66.8 5.4 0.0 0.0 12.7 4.2 8.0 0.0
S3 0.0 0.0 0.0 84.6 0.0 0.0 3.8 0.0 0.0 0.0
S4 5.0 0.0 3.4 0.0 88.5 0.0 0.0 0.0 0.0 0.0
S5 0.0 0.0 0.0 0.0 0.0 87.7 0.0 4.7 0.0 3.1
S6 0.0 0.0 0.0 5.8 0.0 0.0 72.1 3.5 15.5 0.0
S7 0.0 0.0 0.0 0.0 0.0 0.0 5.8 84.9 0.0 0.0
S8 0.0 0.0 0.0 10.0 0.0 0.0 7.9 5.6 72.5 0.0
S9 0.0 0.0 0.0 0.0 0.0 19.4 0.0 12.5 0.0 60.1
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APPENDIX B CONFUSION MATRICES

Confusion matrices used as data sets:

CLARKE confusion matrix (Clarke, 1957, pp. 715-720)

pa ta ka fa Oa sa

pa 405 242 162 128 048 015
ta 293 319 233 085 045 025
ka 208 440 240 023 057 032
fa 097 015 015 660 163 050
Oa 058 050 040 315 340 197
sa 012 078 050 035 282 543

POLLACK1 confusion matrix (Pollack and Decker, 1960, pp.1-6)

f h 1 r w hw y #

f 96 0 0 1 2 0 0 0
h 6 84 0 0 0 0 0 9
1 1 1 76 12 5 2 2 0
r 1 1 11 57 14 5 11 0
w 1 0 3 5 69 15 8 0
hw 1 1 2 3 25 62 7 0
y 0 1 1 1 3 1 94 0
# 2 6 0 0 1 0 0 91

POLLACK2 confusion matrix

f h 1 r w hw y #

f 89 2 1 2 2 3 1 0
h 14 70 1 1 1 0 0 12
1 4 3 63 8 12 4 5 1
r 1 1 8 40 25 10 16 0
w 1 0 2 7 61 20 8 1
hw 5 1 1 1 20 65 8 0
y 1 1 6 7 12 2 71 0

3 8 0 0 0 0 1 88
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POLLACK3 confusion matrix

f h 1 r w hw y #

f 66 10 4 4 4 4 2 5
h 14 54 4 2 2 2 1 21
1 4 3 48 12 16 7 6 3
r 3 3 20 27 25 9 11 1
w 4 2 10 13 48 12 11 0
hw 9 3 4 6 26 42 10 1
y 1 2 16 12 22 7 40 1
# 8 20 4 3 3 2 1 60

POLLACK4 confusion matrix

f h 1 r w hw y #

f 28 20 12 4 7 4 3 22
h 8 45 14 3 7 2 6 15
1 6 7 34 7 17 13 9 8
r 2 7 20 18 26 8 11 8
w 5 7 17 11 28 9 15 9
hw 9 8 13 9 17 27 9 7
y 3 6 17 14 23 12 19 6
# 13 30 9 3 4 3 6 32

WILPON10 confusion matrix (Wilpon, 1985, pp. 423-451)

0 1 2 3 4 5 6 7 8 9

0 86.5 0.0 0.0 0.0 5.6 0.0 0.0 0.0 0.0 0.0
1 0.0 94.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
2 0.0 0.0 90.7 0.0 0.0 0.0 0.0 0.0 0.0 0.0
3 0.0 0.0 0.0 93.9 0.0 0.0 0.0 0.0 0.0 0.0
4 0.0 0.0 0.0 0.0 94.4 0.0 0.0 0.0 0.0 0.0
5 0.0 0.0 0.0 0.0 0.0 92.5 0.0 0.0 0.0 3.4
6 0.0 0.0 0.0 0.0 0.0 0.0 85.7 0.0 7.1 0.0
7 0.0 0.0 0.0 0.0 0.0 0.0 0.0 92.0 0.0 0.0
8 0.0 0.0 0.0 0.0 0.0 0.0 3.3 0.0 90.5 0.0
9 0.0 0.0 0.0 0.0 0.0 7.5 0.0 0.0 0.0 84.2
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WILPON7A confusion matrix

0 1 2 3 4 5 6 7 8 9

0 69.6 0.0 0.0 0.0 15.6 0.0 0.0 5.1 0.0 0.0
1 0.0 88.2 0.0 0.0 5.3 0.0 0.0 0.0 0.0 0.0
2 4.6 0.0 78.2 0.0 0.0 0.0 4.7 5.4 0.0 0.0
3 0.0 0.0 0.0 91.3 0.0 0.0 3.0 0.0 0.0 0.0
4 0.0 0.0 0.0 0.0 95.4 0.0 0.0 0.0 0.0 0.0
5 0.0 0.0 0.0 0.0 0.0 87.8 0.0 0.0 0.0 6.9
6 0.0 0.0 0.0 4.2 0.0 0.0 79.3 0.0 11.6 0.0
7 0.0 0.0 0.0 0.0 0.0 0.0 0.0 88.4 0.0 0.0
8 0.0 0.0 0.0 7.5 0.0 0.0 5.6 0.0 81.2 0.0
9 0.0 3.1 0.0 0.0 0.0 12.8 0.0 4.6 0.0 74.9

WILPON7B confusion matrix

0 1 2 3 4 5 6 7 8 9

0 66.3 0.0 0.0 0.0 27.7 0.0 0.0 0.0 0.0 0.0
1 0.0 94.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
2 8.1 0.0 77.8 0.0 8.1 0.0 0.0 4.5 0.0 0.0
3 0.0 0.0 0.0 95.7 0.0 0.0 0.0 0.0 0.0 0.0
4 0.0 3.3 0.0 0.0 93.6 0.0 0.0 0.0 0.0 0.0
5 0.0 6.8 0.0 0.0 0.0 84.0 0.0 0.0 0.0 5.0
6 0.0 0.0 0.0 0.0 0.0 0.0 82.4 6.8 5.1 0.0
7 0.0 0.0 0.0 0.0 0.0 0.0 0.0 85.5 0.0 5.0
8 0.0 0.0 0.0 0.0 0.0 0.0 5.8 0.0 90.3 0.0
9 0.0 4.4 0.0 4.1 0.0 8.9 0.0 0.0 0.0 79.0

WILPON7C confusion matrix

0 1 2 3 4 5 6 7 8 9

0 100.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
1 0.0 98.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
2 0.0 0.0 99.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
3 0.0 0.0 0.0 99.0 0.0 0.0 0.0 0.0 0.0 0.0

4 0.0 0.0 0.0 0.0 100.0 0.0 0.0 0.0 0.0 0.0

5 0.0 4.0 0.0 0.0 5.0 75.0 0.0 4.0 0.0 11.0
6 0.0 0.0 3.0 0.0 0.0 0.0 94.0 0.0 0.0 0.0

7 0.0 0.0 10.0 0.0 0.0 0.0 0.0 87.0 0.0 5.0

8 3.0 0.0 3.0 3.0 0.0 0.0 4.0 0.0 87.0 0.0

9 0.0 9.0 0.0 5.0 0.0 0.0 0.0 0.0 0.0 84.0
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WILPON8A confusion matrix

0 1 2 3 4 5 6 7 8 9

0 58.4 0.0 11.8 0.0 0.0 0.0 4.7 11.8 6.5 0.0
1 7.8 46.3 0.0 0.0 6.4 20.1 0.0 4.0 0.0 8.3
2 0.0 0.0 47.9 3.3 0.0 0.0 7.0 19.4 19.9 0.0
3 0.0 0.0 0.0 74.2 0.0 0.0 7.0 5.4 7.5 0.0
4 28.6 3.1 0.0 0.0 50.6 8.5 0.0 3.8 0.0 0.0
5 3.3 0.0 0.0 0.0 0.0 79.6 7.4 4.2 0.0 3.9
6 0.0 0.0 0.0 4.0 0.0 0.0 62.6 5.0 24.9 0.0
7 0.0 0.0 4.6 0.0 0.0 3.0 12.3 69.4 5.1 3.0
8 0.0 0.0 0.0 7.4 0.0 0.0 0.0 4.7 79.2 0.0
9 0.0 0.0 0.0 0.0 0.0 26.7 14.7 10.2 0.0 43.2

WILPON8B confusion matrix

0 1 2 3 4 5 6 7 8 9

0 84.3 0.0 5.6 0.0 0.0 0.0 0.0 3.3 0.0 0.0
1 6.3 72.9 0.0 0.0 0.0 7.8 0.0 0.0 4.3 6.3
2 0.0 0.0 86.4 0.0 0.0 0.0 0.0 6.0 0.0 0.0
3 0.0 0.0 0.0 87.7 0.0 0.0 0.0 0.0 5.4 0.0
4 34.0 0.0 0.0 0.0 48.7 8.8 0.0 0.0 0.0 0.0
5 3.2 0.0 0.0 0.0 0.0 80.4 5.6 0.0 0.0 6.5
6 0.0 0.0 0.0 0.0 0.0 0.0 85.8 0.0 7.5 0.0
7 0.0 0.0 0.0 0.0 0.0 3.2 9.2 74.8 3.0 3.2
8 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 95.3 0.0
9 0.0 0.0 0.0 4.4 0.0 12.6 12.3 3.9 0.0 64.3

WILPON8C confusion matrix

0 1 2 3 4 5 6 7 8 9

0 100.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
1 0.0 100.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
2 0.0 0.0 100.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
3 0.0 0.0 0.0 100.0 0.0 0.0 0.0 0.0 0.0 0.0
4 0.0 0.0 0.0 0.0 99.0 0.0 0.0 0.0 0.0 0.0
5 0.0 0.0 0.0 0.0 0.0 97.0 0.0 0.0 0.0 0.0
6 0.0 0.0 0.0 0.0 0.0 0.0 91.0 6.0 0.0 0.0
7 0.0 0.0 0.0 0.0 0.0 0.0 0.0 100.0 0.0 0.0
8 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 98.0 0.0
9 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 99.0
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WILPON9A confusion matrix

0 1 2 3 4 5 6 7 8 9

0 63.8 0.0 12.5 0.0 5.7 0.0 3.6 6.8 0.0 0.0
1 0.0 76.2 0.0 0.0 13.4 5.6 0.0 0.0 0.0 0.0
2 0.0 0.0 66.8 5.4 0.0 0.0 12.7 4.2 8.0 0.0
3 0.0 0.0 0.0 R4.6 0.0 0.0 3.8 0.0 0.0 0.0
4 5.0 0.0 3.4 0.0 88.5 0.0 0.0 0.0 0.0 0.0
5 0.0 0.0 0.0 0.0 0.0 87.7 0.0 4.7 0.0 3.1
6 0.0 0.0 0.0 5.8 0.0 0.0 72.1 3.5 15.5 0.0
7 0.0 0.0 0.0 0.0 0.0 0.0 5.8 84.9 0.0 0.0
8 0.0 0.0 0.0 10.0 0.0 0.0 7.9 5.6 72.5 0.0
9 0.0 0.0 0.0 0.0 0.0 19.4 0.0 12.5 0.0 60.1

WILPON9B confusion matrix

0 1 2 3 4 5 6 7 8 9

0 90.9 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
1 0.0 95.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
2 0.0 0.0 95.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
3 0.0 0.0 0.0 94.2 0.0 0.0 0.0 0.0 0.0 0.0
4 3.8 0.0 0.0 0.0 93.4 0.0 0.0 0.0 0.0 0.0
5 0.0 0.0 0.0 0.0 0.0 93.1 0.0 0.0 0.0 3.0
6 0.0 0.0 0.0 0.0 0.0 0.0 87.0 3.2 4.2 0.0
7 0.0 0.0 0.0 0.0 0.0 0.0 0.0 93.3 0.0 0.0
8 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 95.3 0.0
9 0.0 0.0 0.0 0.0 0.0 9.2 0.0 0.0 0.0 85.0

WILPON9C confusion matrix

0 1 2 3 4 5 6 7 8 9

0 87.0 0.0 9.0 0.0 4.0 0.0 0.0 0.0 0.0 0.0
1 0.0 98.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
2 0.0 0.0 98.0 0.0 U. 0.0 0.0 0.0 0.0 0.0
3 0.0 0.0 0.0 98.0 0.0 n.0 0.0 0.0 0.0 0.0
4 0.0 0.0 3.0 0.0 97.0 0.0 0.0 0.0 0.0 0.0
5 0.C 0.0 0.0 0.0 8.0 72.0 0.0 3.0 0.0 14.0
6 0.0 0.0 4.0 0.0 0.0 0.0 9: 0 5.0 0.0 0.0
7 0.0 0.0 7.0 0.0 0.0 0.0 0.0 91.0 0.0 0.0
8 0.0 0.0 0.0 3.0 0.0 0.0 0.0 0.0 94.0 0.0
9 0.0 7.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 90.0
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APPENDIX C ENUMERATION SCHEME (TURBO PASCAL)

Listing for Turbo Pascal program called INFO:

program information(infile,outfile);

type
rangearray = array~l. .35] of integer;
sqarray = array~l. .35, 1. .35] of real;
stname = string[5];
smallsub = array[l. .5] of real;

var
i, j, k, subsetsize, stim :integer;
1n2, count : real;
subset : rangearray;
confusion : sqarray;
infoin : string[8];
infilel outfile :text;
stimname : array 1. .35] of stname;
subsetname : array~l. .35] of stname;
topfive :smallJsub;
tfsubset :array~l. .35, 1. .5]of stname;

function totalinfo(subset: rangearray) : real;
var rowinfo, colinfo, jointinfo :real;
var rowtot, coltot, mattotal, jointprob :real;

begin
mattotal :=0;
for i :=1 to subsetsize do

begin
for j := 1 to subsetsize do

mattotal := mattotal +
confusionrsubsetri] ,subset~j]];

end;
jointinfo := 0;
rowinfo 0;
colinfo :=0;
for i :=1 to subsetsize do

begin
rowtot :=0;
coltot :=0;
for j 1 to subsetsize do

begin
rowtot := rowtot + confusion~subset(i] ,subset~j]];

77



coltot := coltot + confusion~subset~j] ,subset~i] J;
jointprob := confusion~subset~i] ,subset[j) ]/mattotal;
if jointprob <> 0 then
jointinfo := jointinfo - (jointprob)*

(ln(jointprob)/1n2);
end;

rowinfo :=rowinfo - rowtot/mattotal *

(ln(rowtot/mattotal) /1n2);
colinfo :=colinfo - coltot/mattotal, *

end; (ln(coltot/mattotal) /1n2);

totalinfo :=rowinfo + colinfo - jointinfo;
end f function "1totalinfo"l };

procedure evaluate(var val :real);
var i ,j, k : integer;
var temp : real;
var tempset :array[1. .35] of stname;

begin
for i := 1 to 5 do

begin
if val > topfive~i] then

begin
temp topfive~i];
for k 1 to 35 do

tempset(k] :=tfsubset[k,i3;
topfive~i] :=val;
for k := 1 to 35 do

tfsubsetfk,i] :=subsetname[k];
val :=temp;
for k := 1 to 35 do

subsetname(k] :=tempset[k];
end j if loop }

end f for loop };
end {procedure "evaluate" };

procedure process (subset:rangearray; size: integer);
var j:integer;
var value : real;

begin
count := count + 1;
for j:= 1 to subsetsize do

subsetname~j] := stimname~subset~j]];
value := totalinfo(subset);
evaluate (value);
end f procedure "process" };
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procedure combs(n,r:integer) {(Rohl, 1983, pp. 154-157)};
var s: rangearray;

procedure choose(d,lower:integer);
var i:integer;
begin
for i:= lower to n-r+d do

begin
s(d] := i;
if d <> r then choose(d+l,i+l) else process(s,r)

end { of loop on "i" }
end { of procedure "choose" };

begin
choose(1,1)
end { of procedure "combs" };

procedure storeinfo(size: integer);
var i, j : integer;

begin { procedure storeinfo }
write(outfile, 'The number of subsets of size ', size,

examined was: ');
writeln(outfile, count:8:0);
write(outfile, 'The following 5 subsets had the highest

info');
writeln(outfile,' transfer values.');
for i := 1 to 5 do

begin
for j := 1 to size do

write(outfile, tfsubset(j,i], '

writeln(outfile);
writeln(outfile, 'Info transmitted: ', topfive[i] :7:4);
writeln(outfile);
end { for loop };

end { procedure storeinfo };

procedure getdata(var stimuli :integer);
var i, j, nolines : integer;

begin { procedure getdata }
reset(infile);
no lines := 0;
while not EOF(infile) do

begin
no lines := no-lines + 1;
readln(infile);
end;

stimuli := no lines div 2;
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reset(infile);
for i := 1 to stimuli do

readln(irifile,stimname~i]);
for i := 1 to stimuli do

begin
writein;
for j := 1 to stimuli do

beginA
read(infile, confusion[i,j]);
write(confusion~i,j]:5:2,' ');
end;

readln(infile);
end {for loop };

writein;
end {procedure getdata };

begin {MAIN PROGRAM}
lri2 := ln(2);
write('What flie do you want to process (8 character name)?')
readln(infoin);
assign(infile, concat(infoin, '.dat'));
assign(outfile, concat(infoin, '.out'));
rewrite(outfile);
writeln(outfile, 'This data file is called:

1,infoin + '.DAT');
writeln;
writeln('This data file is called: 1,infoin + '.DAT');
getdata(stim);
for i:= 2 to stim do

begin
count := 0;
subsetsize := i;
for j := 1 to 5 do

begin
topfive~j] := 0;
for k := 1 to 35 do

tfsubset(k,j] := '0';
end {for loop };

writeln;
writeln('Now processing subsets of size ',i);
combs (stim, i) ;
writeln('Done with subsets of size ',i);
writeln('There were ',count:8:O,' subsets of size 1,i);
storeinfo(i);
end;

close(infile);
close (outfile);
end.
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Sample input data file (WILPON9A):

0
1
2
3
4
5
6
7
8
9
63.8 0.0 12.5 0.0 5.7 0.0 3.6 6.8 0.0 0.0 0.0
0.0 76.2 0.0 0.0 13.4 5.6 0.0 0.0 0.0 0.0 0.0
0.0 0.0 66.8 5.4 0.0 0.0 12.7 4.2 8.0 0.0 0.0
0.0 0.0 0.0 84.6 0.0 0.0 3.8 0.0 0.0 0.0 0.0
5.0 0.0 3.4 0.0 88.5 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 87.7 0.0 4.7 0.0 3.1 0.0
0.0 0.0 0.0 5.8 0.0 0.0 72.1 3.5 15.5 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0 5.8 84.9 0.0 0.0 0.0
0.0 0.0 0.0 10.0 0.0 0.0 7.9 5.6 72.5 0.0 0.0
0.0 0.0 0.0 0.0 0.0 19.4 0.0 12.5 0.0 60.1 0.0
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APPENDIX D THE CONFUSION/RECOGNITION MODEL (MODIFIED)

Theise's GAMS model for maximizing recognition while

minimizing confusion:

$TITLE THEISE RECOGNITION MODEL-
$offupper offsymxref of fsym].ist

* Revision By Mike Sheehan 2/92

OPTIONS
limrow = 0
limcol = 0
soiprint = off
optcr = 0.0
optca = 0.00
iterlim = 100000
reslim =100000

integer2 = 122
integeri = 1

SETS I stimuli;

ALIAS(I,J);

SCALAR S size of the subset to be selected;

$INCLUDE THEISE. DAT

SCALAR M total number of responses in matrix;

M =SUM((I,J), C(I,J));

PARAMETER P(I,J) matrix of prob of each confusion value;

P(I,J) =( CARD(I) * C(I,J) ) / (S* M);

PARAMETER LP(I,J) logarithmic probability matrix;

LP(I,J) $ P(I,J) =P(I,J) *(LOG(l/P(I,J))/LOG(2));

BINARY VARIABLE
X(I) selected stimuli in subset;
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POSITIVE VARIABLE
Y(IJ) Indicator for joint selection of stimuli

* y(i,j) is 1 if both x(i) and x(j) are 1 else y(i,j) is 0;

FREE VARIABLE
DPLUS deviation from confusion threshold
REC objective function value

EQUATIONS

OBJFUNC define objective function
SUBSET ensure proper subset size
YDEF(I,J) set y to one if i and j selected
CONFUSE ensure minimum confusion ;

SUBSET.. SUM(I, X(I)) =E= S ;

YDEF(I,J)$(ord(i) lt ord(j)).. X(I) + X(J) - Y(I,J) =L= 1
*where i is less than j ensure y(i,j) is 1 iff both x(i) and
*x(j) are 1, for i greater than j is redundant

CONFUSE.. SUM((I,J) $ (ORD(I) LT ORD(J)),
*sum values of confusion in upper triangle of matrix

(C(IJ) + C(J,I)) * Y(I,J))
*add values of confusion from complementary cells in matrix
*effectively upper triangularizes the matrix

+ SUM(I, U(I) * X(I)) - DPLUS =L= T
*add relavent values of u (non-responses) then ensure the
*confusion value is less than (or equal to) threshold value
*if not, variable dplus will conpensate for the difference
*and ensure the inequality condition holds

OBJFUNC.. REC =E= SUM(I, C(I,I) * X(I) - M * DPLUS ) ;
*sum values of C on main diagonal for chosen stimuli
*then subtract deviation from confusion threshold times
*large constant

MODEL RECOG /ALL/;

PARAMETER ENTROPY(*,*) Entropy Among Selected Stimuli ;
PARAMETER NEWTOT total of confusion values in chosen matrix;
PARAMETER STIMPROB(I) probability of the i row in selected ;
*confusion matrix
PARAMETER RESPPROB(J) probability of the j column in the ;
*selected confusion matrix
PARAMETER STIMINFO information derived from the stimuli;
*in the chosen subet
PARAMETER RESPINFO information derived from the responses;
*in the chosen subset
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PARAMETER NEWLPMAT(I,J) logarithmic probability matrix using;
*values from chosen subset
PARAMETER JOINTINFO joint information transmitted based on;
*chosen stimuli
PARAMETER TOTALINFO total information transmitted based on;
*chosen stimuli (intersection of stimulus & response info)
PARAMETER RECOGNITN value of recognition for selected stimuli;
PARAMETER CONFUSION post solve to calc confusion;

LOOP (L,

SOLVE RECOG USING MIP MAXIMIZING REC;

CONFUSION =SUM((I,J) $ (ORD(I) lt ORD(J)),
(X.L(I) * X.L(J)) *( C(I,J) + C(J,I) )

ENTROPY(I,J) = LP(I,J) $( X.L(I) *X.L(J)

NEWTOT = SUM((I,J), C(I,J)
$( X.L(I) * X.L(J) )

STIMPROB(I) = SUM(J, C(I,J)
$( X.L(I) * X.L(J) AND C(I,J) )/NEWTOT);

RESPPROB(J) = SUM(I, C(I,J)
$( X.L(I) * X.L(J) AND C(I,J) )/NEWTOT);

STIMINFO = SUN(I $ X.L(I),
STIMPROB(I) * (LOG(1/STIMPROB(I))/LOG(2)));

RESPINFO = SUM(J $ X.L(J),
RESPPROB(J) * (LOG(l/RESPPROB(J))/LOG(2)));

NEWLPMAT(I,J) $( X.L(I) * X.L(J) AND C(I,J))
= C(I,J)/NEWTJT *(( LOG(NEWTOT/C(I,J)))/LOG(2));

JOINTINFO = StJM((I,J), NEWLPMAT(I,J) $( X.L(I)
* X.L(J) EQ 1 ));

TOTALINFO =STIMINFO + RESPINFO - JOINTINFO;

RECOGNITN = SUM(I $ X.L(I), C(I,I));

DISPLAY X.L, DPLUS.L, M, TOTALINFO, CONFUSION, RECOGNITN;

S = S + 1;

LNOW(L) = NO;

LNOW(L + 1) = YES )
*end of loop
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Input data file for the Confusion/Recognition Model:

SETS
I stimulus (rows) /SO * S9 /

L model runs / RUN02 * RUN10 / ;

SCALAR S size of the subset to be selected /2/ ;

SET LNOW(L) dynamic set for current run / RUN02 /;

SCALAR T confusion threshold / 0 / ;

PARAMETER U(I) nonresponses in confusion matrix
/ SO 0 /;

TABLE C(I,*) response j to stimulus i

SO S1 S2 S3 54 S5 S6 S7 S8 S9 U
S0 63.8 0.0 12.5 0.0 5.7 0.0 3.6 6.8 0.0 0.0 0.0
S1 0.0 76.2 0.0 0.0 13.4 5.6 0.0 0.0 0.0 0.0 0.0
S2 0.0 0.0 66.8 5.4 0.0 0.0 12.7 4.2 8.0 0.0 0.0
S3 0.0 0.0 0.0 84.6 0.0 0.0 3.8 0.0 0.0 0.0 0.0
S4 5.0 0.0 3.4 0.0 88.5 0.0 0.0 0.0 0.0 0.0 0.0
S5 0.0 0.0 0.0 0.0 0.0 87.7 0.0 4.7 0.0 3.1 0.0
S6 0.0 0.0 0.0 5.8 0.0 0.0 72.1 3.5 15.5 0.0 0.0
S7 0.0 0.0 0.0 0.0 0.0 0.0 5.8 84.9 0.0 0.0 0.0
S8 0.0 0.0 0.0 10.0 0.0 0.0 7.9 5.6 72.5 0.0 0.0
S9 0.0 0.0 0.0 0.0 0.0 19.4 0.0 12.5 0.0 60.1 0.0

*WILPON9A.DAT - data file
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APPENDIX E DATA COMPARISON TABLES AND GRAPHS

Tables and graphs compiling output data from the three models:

Subset Transmitted-information Model Conf usioni Transmitted
size Selected Subsets Recognition information

2 a,fa 38 900 0.613
3I'a, fa, sa 205 1443 0.856
4 ka, fa, sa 827 1848 0.791
5ha, ka, fa, Oa, sa 1987 2188 0.599

Subset onfusionlRecognition Model Confusion/ Transmitted
size Selected Subsets Reco nition information

2 a, sa 27 948 0.803
3 ka fa, sa 205 1443 0.856
4 ka, fa, sa 827 1848 0.791
5 ta, ka, fa. sa 1987 2188 0.599

Subset [Enumeration Scheme Confusion/ Transmitted
size I Selected Subsets Recognition information

2 l a, sa 27 948 0.803
3 ka, fa, sa 205 1443 0.856
4 a, ka, fa, sa 1081 1762 0.817
5 a, ka, fa, Oa. sa 2238 2167 0.651

Figure 3 Comparison of Model Results for Clarke Data Set

86



0.9-

Z 0.85- 1

S0.8-

E 0.75-

0.7-

E 0.65-

0.6

0.55-

Subset Size

-i-Trans-Info Model -4-Confus/Recog Mdl --- Enumn Scheme

Figure 4 Clarke Data Set: Transmitted-Information

2500-

S2000-

C1500-

0

0

0

500

Subset Size

-- Recognition (T-1) - Recognftion (CIR) -' Recognition (ES)
Es- Confusion (T-1) -- Confusion (C/R) A~ Confusion (ES)

Figure 5 Clarke Data set: confusion/Recognition

87



Subset Transmitted-Information Model Confusioni Transmitted

size Selected Subsets Recognition information

2 ,y 0 190 1.000
3 f, y, # 2 281 1.535
4 f, 1, y, # 6 357 1.875
5 f, 1, hw, y, # 19 419 2.033
6 f, h, 1, hw, y, # 43 503 2.109

7 ,Lh I, r, hw, y, # 89 560 2.067
Subset jionfusionlRecognition Model Confusioni Transmitted

size ISelected Subsets Reconition information

2 f, y 0 190 1.000
3 f, y, # 2 281 1.535
4 f, 1, y, # 6 357 1.875

5 f 1. hw, y, # 19 419 2.033
6 f. h. 1. hk, V. #43 503 2.109
7__,h, I. r. hw. #',# 89 560 2.067

Subset IIEnumeration Scheme Confusioni Transmitted

size ISelected Subsets Recognition information

2 , 0 190 1.000
3 y,# 2 281 1.535
4 1, ,. # 6 357 1.875
5 h . v, # 19 419 2.033
6 ,h.l1 hw, v, # 43 503 2.109
7 1, h,1. r, hw, X,, # 89 560 2.06"

Figure 6 Comparison of Model Results for Pollackl Data Set
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Subset Transmitted-Information Model Confusioni Transmitted

size Selected Subsets Recognition information
2 ,# 0 128 O.9
3 ,r,# 6 217 1.331
4 ,r, hw, # 25 282 1.522
5 ,I, hw, y, # 46 376 1.686
6 ,h, I, hw, y, # 88 446 1.692
7 ,h, , r, hw, X, # 143 486 1.650

Subset confusion/Recognition Model Confusion/ Transmitted
size Selected Subsets Recognition information

2 w. # 0 153 0.984

4 f,hw, # 
6 248 1.410

I. hw, # 22 305 1.577
5 I, hw, y, # 46 376 1.686
6 fh, 1, hw y, # 88 446 1.691
__ , h, I, r, hw, y, # 143 486 1.650

Subset Enumeration Scheme Confusion/ Transmitted
size [ Selected Subsets Recognition information

2 hw, # 0 153 0.984
3 .y, # 6 248 1.410
4 , I. y, # 23 311 1.580
5 f, Ihw. y, # 46 376 1.686
6 I, h, I. hw, y. # 88 446 1.692
7 h. I, r, hw, X, # 143 486 1.650

Figure 9 Comparison of Model Results for Pollack2 Data Set
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Subset Transmitted-Information Model Confusion/ Transmitted
size Selected Subsets Recognition information

2 ,# 4 87 0.655
3 ,hw, # 22 129 0.893

4 ,r,y, # 52 193 1.019
5 ,r, hw, y, # 100 235 0.972
6 ,h, r, hw, y, # 178 289 0.914

7 ,h, 1, r, hw, y, # 265 337 0.886
Subset onfusion/Recognition Model Confusion/ Transmitted

size Selected Subsets Recognition information

2 # 2 100 0.833
3 , # 18 166 1.027
4 ,hw, y, # 51 208 1.041
5 l, hw, y, # 99 256 1.013
6 h, r. hw, y. # 178 289 0.914

7 ,h, , r, hw, y, # 265 337 0.886
Subset Enumeration Scheme Confusion/ Transmitted

size lSelected Subsets Recognition information

2 I, # 3 108 0.839
3 ,y. # 18 166 1.027
4 ,w, y, # 62 214 1.048

5 l, hw, y, # 99 256 1.013
6 ,h. I, hw, y, # 179 310 0.944
7 h, 1, w, hw, X, # 291 358 0.895

Figure 12 Comparison of Model Results for Pollack3 Data Set
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Subset Transmitted-Information Model Confusionl Transmitted
size Selected Subsets Recognition information

2 ,r 6 46 0.468

3 r, y 37 65 0.427

4 ,r, hw, y 88 92 0.324

5 ,h, r, hw, y 148 137 0.399
6 ,h, r, hw, y, # 261 169 0.341

7 h, r, w, hw, X, # 401 197 0.330
Subset confusion/Recognition Model Confusioni Transmitted

size Selected Subsets Recognition information
2 y 6 47 0.472

3 ,r, hw 36 73 0.377
4 ,h, r, hw 84 118 0.418

5 ,h, r, hw, y 148 137 0.399
6 ,h, r, hw, y, # 261 169 0.341

7 h, I, r, hw. v, # 396 203 0.298

Subset |Enumeration Scheme Confusioni Transmitted
size [ Selected Subsets Recognition information

2 ,y 6 47 0.472
3 ,r, hw 37 90 0.455
4 ,h, r, hw 84 118 0.418

5 h, r, hw, y 148 137 0.399
6 ,h, r, hw, y, # 261 169 0.341
7 h. r, w, hw, X, # 401 197 0.330

Figure 15 Comparison of Model Results for Pollack4 Data Set
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Subset Transmitted-Information Model Contusioni Transmitted
size Selected Subsets Recognition information

2 1,4 0.0 188.9 1.000
3 1,3,4 0.0 282.8 1.585
4 1,3,4,5 0.0 375.3 2.000
5 1,3,4,5,7 0.0 467.3 2.322
6 1, 2, 3, 4,5, 7 0.0 558.0 2.585
7 1, 2,3,4,5,7,8 0.0 648.5 2.807
8 ,1, 2, 3, 4, 5, 7,8 5.6 735.0 2.958
9 , 1, 2, 3, 4, 5, 6, 7, 8 16.0 820.7 3.064[Subset ]Confusion/Recognition Model Confusion/ Transmitted

size jlSelected Subsets Reconition information
2 1,4 0.0 188.9 1.000
3 1,3,4 0.0 282.8 1.585
4 1,3,4,5 0.0 375.3 2.000
5 1,3,4,5, 7 0.0 467.3 2.322
6 1,2,3,4, 5,7 0.0 558.0 2.585

7 1, 2,3,4,5,7,8 0.0 648.5 2.807
8 , 1. 2, 3,4, 5. 7, 8 5.6 735.0 2.958

9 0,1.2.3,4.5,6,7,8 16.0 820.7 3.064
Subset Enumeration Scheme Confusion/ Transmitted
size Selected Subsets Recognition information

2 1,4 0.0 188.9 1.000
3 1,3,4 0.0 282.8 1.585
4 1.3.4,5 0.0 375.3 2.000

5 1.3,4.5,7 0.0 467.3 2.322
6 1. 2,3,4,5,7 0.0 558.0 2.585
7 1. 2.3,4,5.7,8 0.0 649.5 2.807
8 ,1,2,3,4,5.7,8 5.6 735.0 2.958

9 0.1, 2. 3. 4, 5, 6, 7,8 16.0 820.7 3.064

Figure 18 Comparison of Model Results for WilponlO Data Set
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Subset Transmitted-Information Model Con fusionl Transmitted
size Selected Subsets RecogNiton information

2 3,4 0.0 186.7 1.000
3 3,4,7 0.0 275.1 1-W8
4 3,4,5,7 0.0 362.9 1.999
5 1,3,4,5,7 5.3 451.1 2.256
6 1,2,3,4,5,7 10.7 529.3 2.473
7 [,,3,4,3,7,8 18.2 610.5 2.650
8 ,1,2,3,4,5,7, 8 43.5 680.1 2,698
9 ,1,2, 3,4, 5, 7,8,9 70.9 755.0 2.740

Subset FonfusionRecognition Model Confusioni Transmitted
size I Selected Subsets Recognition information

2 3,4 0.0 186.7 1.000
3 3,4,7 0.0 275.1 1.584

4 3,4,5,7 0.0 362.9 1.999
5 0,1,2,3,5 4.6 415.1 2.256
6 1, 2,3,4,5,7 10.7 529.3 2473
7 1. 2, 3.4,5,7,8 18.2 610.5 2.650
8 0.1, 2,3,4,59,7,8 43.5 680.1 2.698
9 0, 1,2.3.4,5, 7,8,9 70.9 755.0 2.740

Subset Enumeration Scheme C on fusion W1 Tr7ansmitted
Sizec 5elected Subsets Recogn ition information

2 1.7 0.0 176.6 1.000
3 1,5.7 0.0 264.4 1.585
4 1,3,5,7 0.0 355.7 2.000

5 D,1,.2,3,5 4.6 415.1 2.256
6 1,2,3.4,5.7 10.7 529.3 2.473

7 1,1-3,14.517,8 18.2 610.5 2.650
8 .1, 2.3.4,5,7,8 43.5 680.1 2.698
9 ,1, 2, 3, 4, 5,7,8.9 70.9 755.0 2.740

Figure 21 Comparison of Model Results for Wilpon7A Data Set
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Su5bset ra-nsmitted-In ormation Model Confusioni Transmitted
size -Selected Subsets Rec n/lion information

2 ,30.0 189.9 1.000
3 1,3.8 0.0 280.2 1.585

4 1,3,7,8 0.0 365.7 1.999
5 .4,5,7,8 0.0 4.49.1 2.320
6 ,1,3,5,7,8 6.8 516.0 2.506
7 ,1,2,3.5.,8 19.4 593.8 2-638
8 .1,2,3,5,6,7,8 37.1 676.2 2.720
9 1,1,2,3,4,5,6.7,8 76.2 769.8 2.752

Subset Uo-nus/ion/Recognition Model Confusioni Transmitted
size Selected Subsets Recognition information

2 1, 3 0.0 189.9 1.000
3 1,3,8 0.0 280.2 1.585
4 1.3.7.8 0.0 365.7 1.999
5 1.4.5.7,8 0.0 449.1 2.320
6 .1.3.5.7,8 6.8 516.0 2.506
7 .1. 2,3,5,7.8 19.4 593.8 2.638
8 .1. 2.3.5.6.7,8 37.1 676.2 2.720
9 .1. 2.3.5.6.7.8.9 64.5 755.2 2.745

Subset Enumerat. on Scheme Conlusionl Transmitted
size Selected Subsets Recognition information

2 2,9 0.0 156.8 1.000
3 3.4.8 0.0 279.6 1.585
4 3,4.7.8 0.0 365.1 1.999
5 3.4,5. 7.8 0.0 449.1 2.320

6 .1.3.5.7.8 6.8 516.0 2.506
7 . I1.2.,3.5.7.8 19.4 593.8 2.638

8 .1. 2.3,5.6.7.8 37.1 676.2 2.720

9 1. 1. 2.3.4. 5.6. 7.8 76.2 769.8 2.752

Figure 24 Comparison of Model Results for Wilpon7B Data Set
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Suse ranslmtted-In formation Model Cont usioni Transmitted
size Selected Subsets Recognition Information

2 .4 0 200 1.00
3 ,2,4 0 299 1.58
4 ,2,3,4 0 398 2.000
5 , 1,2Z.3,4 0 496 2.322
6 ,1,3,4,6,7 0 578 2-583

9 ,1,Z,3.4,5,6,7,8 3 3 -0
at nfusioni ecognition Model con usioni Transmitte

size Selected Subsets Recognition information

5 12340 496 2M32
6 134670 578 2.583
7 13467810 665 2.712
8 134567823 740 2.814
9 2,1 Z34,,,7839 839 2.909

Subset Enumeration Scheme Cont usioni Transmitted
size Selected Subsets Recognition information

2 40 200 1.000
3 40 299 1.585
4 Z340 398 2.000
5 12340 496 2322
6 134670 578 2-W8
7 13467810 665 2.712

8 ,1, 3,.5,6,7, S 23 740 2.814
91 ,1,2Z.3,4,5,6.7.8 39 839 2.90

Figure 27 Comparison of Model Results for Wilpon7C Data Set
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Subset Transmitted-Information Model Confusion/ Transmitted
size Selected Subsets Recognition Information

2, 9 0.0 91.1 0.998
3 2,4,9 0.0 141.7 1.582
4 2,3,4,9 3.3 215.9 1.879
5 ,2,3,4,9 21.1 262.2 1.952
6 ,2, 3,4,8,9 55.9 341.4 1.929
7 [, 1, 2, 3, 4,8,9 110.6 399.8 1.914

8 , 1,2,3,4,5,8,9 173.1 479.4 1.928
9 ,1,2,3,4,5,6,8,9 242.8 542.0 1.889

Subset Confusioniecognition Model Confusioni Transmitted
size Selected Subsets Recognition information

2 5,8 0.0 158.8 1.000
3 ,3, 9 0.0 175.8 1.551
4 2,3, 4,9 3.3 215.9 1.879

5 1,2,3.4,9 21.1 262.2 1.952
6 1,2,3,4 .6,9 53.8 324.8 1.922
7 1,2,3,4,6.9 106.7 383.2 1.909
8 O, 1.2 3,4,6,8.9 172.9 462.4 1.867
9 .1.2,3,4.5.6,8,9 242.8 542.0 1.889

Subset Enumeration Scheme Confusion/ Transmitted
size Selected Subsets Recognition information

2 5,8 0.0 158.8 1.000
3 2,4,9 0.0 141.7 1.582
4 3,4,9 3.3 215.9 1.879
5 1 2,3,4,9 21.1 262.2 1.952
6 1, 2,3,4*,9 55.9 341.4 1.929
7 2,3,4,5,8,9 110.6 433.1 1.919
8 O1, , 3.45,8,9 173.1 479.4 1.928
9 1, 2, 3, 4, 5, 6, 8, 9 242.8 542.0 1.889

Figure 30 Comparison of Model Results for Wilpon8A Data Set
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Subset Transmitted-information Model Confusion/ Transmitted
size Selected Subsets Recognition information

2 , 8 0.0 144.0 0.923
3 2,4,8 0.0 230.4 1.531
4 2,4,8,9 0.0 294.7 1.954
5 1,2,3,4.6 0.0 381.5 2.292
6 1,2,3,4,6,7 15.2 456.3 2.400
7 12,3,4,6.7,8 35.4 551.6 2.455
8 , 2,3,4,5,6,7,8 60.8 632.0 2.520
9 ,1,2,3,4,5,6,7.8 113.2 716.3 2.527

Subset onfusionlRecognition Model Confusioni Transmitted
size Selected Subsets Recognition information

2 8 0.0 181.7 0.998
3 .5,8 0.0 262.1 1.581
4 ,2.3,6 0.0 332.8 1.996
5 1,2,3,4,6 0.0 381.5 2.292
6 1,2, 3,4,6,7 15.2 456.3 2.400
7 1,2,3,4.6,7,8 35.4 551.6 2.455
8 1,2,3.4,5.6.7,8 60.8 632.0 2.520
9 1,2,3,4,5,6,7,8,9 110.0 696.3 2.454

Subset Enumeration Scheme Confusion/ Transmitted
size Selected Subsets Recognition information

2 2,6 0.0 172.2 1.000
3 2,3,6 0.0 259.9 1.585
4 1, 2,3,6 0.0 332.8 1.996
5 , 2,3,4,6 0.0 381.5 2.292
6 ,23,4.6,7 15.2 456.3 2.400
7 , 23,4,6,7,8 35.4 551.6 2.455
8 1,2,3,4.5,6,7,8 60.8 632.0 2.520
9 E 1, 2.3.4,5,6,7,8 113.2 716.3 2.527

Figure 33 Comparison of Model Results for Wilpon8B Data Set
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Figure 34 Wilpon8B Data Set: Transmitted-Information
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V

Subset Transmifted-Information Model Cornuaioni Transmitted
size Selected Subsets Recogntion Information

2 ),2 0 200 1.000
3 ),1,2 0 300 1585
4 ),2,3,7 0 400 2.000
5 ,1, 2, 3,7 0 500 2.322
6 ,1, 2, 3,4,7 0 599 2.585
7 ,1, 2, 3,4,7.9 0 698 2.807
8 1, 2, 3,4,7,8,9 0 796 3.000
9 ,1, 2, 3,4,5,7,8,9 0 893 3.170

Subset 'onfusionlRecognition Model Conf usion/ Trmmitted
size Selected Subsets Recognition information

2 ),7 0 20O 1.000
3 ),3,7 0 300 1.585
4 ),1,3,7 0 400 2.000
5 1,2, 3,7 0 500 2.322
6 ,1, 2, 3,4,7 0 599 2585
7 ,1, 2, 3,4,7,9 0 698 2.807
8 ),1,2.3,4,7,8,9 0 796 3.000
9 ),1,2.3,4,5,7,8,9 0 893 3.170

Subset Enumeration Scheme Confusion/ Transmitted
size Selected Subsets Recognition information

2 ), 1 0 200 1.000
3 ),1,2 0 300 1.585
4 ,1, 2,3 0 400 ZOO0
5 ,1,2,3,7 0 500 2M
6 ),1,2,3,4,7 0 599 2.585
7 ,1,2,3,4,7,9 0 698 2.807
8 ), 12, 3,4.78,9 0 796 3.000
9 ),1,2,3,4,5,7,8,9 0 893 3.170

Figure 36 Comparison of Model Results for Wilpon8C Data Set
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Figure 37 Wilpon8C Data Set: Transmitted-Information

900-

S800-

> 700-

600-

! 500
0
d) 400-

a 300-

0

()100-

2 3 4 5 6 7 a 9
Subset Size

-- Recognition (N-) - Recognition (CIR) - Recognition (ES)
-- Confusion (T-1) -- Confusion (CIR) - Confusion (ES)

Figure 38 Wilpon8C Data Set: Confusion/Recognition
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Subset Transmtted-information MdlConfusionl Transmitted
size Selected Subsets Recognition information

2 ,50.0 176.2 1.000
3 3,4,5 0.0 260.8 1-585
4 D,1, 3,9 0.0 284.7 1.987

5 ,1,3,8,9 10.0 357.2 2.183
6 ,1,3,4,8,9 34.1 445.7 2.233

9 ,1,23,4,,78,9918 6.324

Subset ant usioni ecognition Model Cnuin .mte
Si ze Selected Subsets Recogniio Information

5 ,138910.0 357.2 2.183
6 ,1357832.7 469.7 2.242
7 ,,,457856.8 558.2 2.340
8 ,,.,457890.3 625.0 2.370

9 ),1,2,3,4,5,7,8.9 125.3 685.1 2.429
Subset- Enumeration Scheme Cant usioni Transmitted

size Selected Subsets Recognition information
2 , 7 0.0 169.5 1.000
3 3,4,5 0.0 260.8 15
4 ),1,8,9 0.0 272.6 1.994
5 ),1.3,8,9 10.0 357.2 2.183
6 1,13,5.7,8 32.7 469.7 2.242
7 ),1,3,4,5,7,8 56.8 558.2 2-340
8 ),1,2Z,3,4,5.7,8 91.5 600.2 2.385
9 .,1,2,3,4,5,7,8,9 125.3 685.1 2.429

Figure 39 Comparison of Model Results for Wilpori9A Data Set
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size Selected Subsets Rec==ito information
*T ,8 0.0 190.5 1.000
3I 1,2,8 0.0 285.5 158

4 1,2,3,8 0.0 379.7 2.000
5 1,2,3,4,8 0.0 473.1 2.M2
6 1,2,3,4, 7,8 0.0 566.4 255

77 ,Z34.,780.0 659.5 21807
8 ,,,,5783.8 750.4 2.969

9 .1, Z 3,4.5,6,7,8 11.2 837.4 3.089
Subset renfueraltogion h el Confusioni- Transmitted
size Selected Subsets Recognitio Information

2 80.0 190.5 1000
93 I80.0 285.5 1.585

H ,23.80.0 379.7 2.000
5 ,Z3480.0 473.1 2M32
6 1234780.0 566.4 2.585
7 ,,,5780.0 659.5 2.807
8 , .,5783.8 750.4 1.99

9 .1.2,3,4,5,6,7,8 11.2 837.4 3.089

Figurez 42leCompari snofMoe Rel t or WinfrmonBDt e

1,8 .0 10.51120
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size Selected Subsets Recognition Infoirmation
120 196 1.000

3t 1,243 0 294 1.585
4 1,3,4,7 0 384 1.999
S .1,3.5.6 0 446 2.313
6 .1,3.5.6,8 3 540 2-541

8 .1,3,4.6.7.8.9 1 4 .5
9 ,1,2,3,4,6,7,8,9 4 4 .0

Subset onfusion/Recognition Mode eofsi Trnmte
size Selected Subsets Recognition Information

5 3560 446 2.313

6 135683 540 2.541

7 13567811 631 1.697
8 134678919 746 19857

9 .1.2,3 ,4.6.7,8,9 42 844 2.902
Subset Enumeration Scheme Confusioni Transmitted

size Selected Subsets Recognition information
2 120 196 1.000
3 1230 294 1.58
4 6990 362 1.999
5 13680 442 2.314

6 135683 540 2.541
7 13467812 656 2,699
8 134678919 746 2.857
9 ,,234..,8944 818 2-904

Figure 45 Comparison of Model Results for Wilpon9C Data Set
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Figure 46 Wilpon9C Data Set: Transmitted-Information
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Figure 47 Wilpon9C Data Set: Confusion/Recognition

115



S u b s e ' r a n m g t ge d - rl f o r m a i o n M o d e l G ofu s o n / Tftan m o t e d
size Smlected Subsets R eoo frYion information

2 '17 V 1. 2 0.937
3 ,7, 1 4 0 .0 0 0 2 .2 2 0 1 .5 4 6
4 ,6, 7 , 8 0 .0 1 2 3 .4 5 8 1 .9 7 0
5 Z 3,4, S 0.048 4.391 2.233
6 2,4,5,6.7 0.090 5.278 2.446
7 2,3,4,5,6,7 0.138 6.147 2.630
8 ,2, 3,4, 5, 6, 13. 16 0.210 6.604 2.742
9 ,2, 4, 5, 6, 10, 11, 13,16 0.336 7.383 2.821
10 , 23,4.6, 10, 12, 13,16,20 0.480 8.074 2.885
11 2,3,4,6, 10, 11, 12 13,16,20 0.672 8.859 2.932
12 2,3,4,5.6.7,8,10,11, 13.16 0.971 9.960 2.979
13 -11, 13, 16 1.229 10.799 2.994
14 -11,13, 14, 16 1.712 11.305 2.994
15 -14, 16 2.036 12.061 2.995
16 -14, 16,20 2437 12.751 2.993
17 -16,20 2.815 13.513 2.990
18 .16, 18, 20 3.264 14.233 2975
19 -16. 18 -20 3 .99 2 14 .7 9 2 2 -93 3

u n ru s io n/e c o g n io n M o d e l C o n u s io n/ t r a n s m t t e d

size Selected Subsets Recognition information
2 ,2 0.000 1.814 1.000

3 ,2,3 0.000 2683 1.585
4 ,6, 7,8 0.012 3.458 1.970
5 , 2,3,4, 5 0.048 4.391 2.233
6 , 2,4,5,6,7 0.090 5.278 2.446
7 ,2, 3 , 4 , 5 , 6 , 7 0 .1 3 8 6 .1 4 7 2. 6 3 0
8 . 23,4,5,6, 13. 16 0.210 6.604 2742
9 24, 5, 6, 10, 11, 13, 16 0.336 7.383 2821
10 23,4,6, 10, 12 13,16.20 0.480 8.074 2.885
11 2.3,4,6, 10. 11, 12. 13, 16,20 0.672 8.859 2.932
12 . 23,4,6,8. 10, 11, 12 13, 16.20 0.900 9.692 2.959
13 -4, 6,8-13, 16, 20 1.152 10.531 2.976
14 -4,6,8-13,15,.16,20 1.494 11.293 2.962
15 -4, 6-13, 15, 16 .20 1-8 7 1 12 168 2 -98 1
16 1-13, 15, 16.20 2.278 12.888 2 990
17 -13, 15, 16. 18. 20 2.715 13.727 2-975
18 1-16, 18,20 3.264 14.233 2.975
19 1-18, 20 3.988 14.691 2902

umset etnuration bcheme uonlusion / I ransmdfed
size ISelected Subsets Recognition information

2 , 7 0.000 1.756 1.000

3 .2.3 0.000 2.683 1.585
4 .6,7,8 0.000 3.458 1.970
5 . 2,3,4. 5 0.048 4.391 2.234
6 2,4,5,6,7 0.090 5.278 2.446
7 , 23,4,5,6,7 0.138 6.147 2.630
8 2,3,4,5,6,7,13 0.222 6.926 2.755
9 2.3,4,5.6.7,8,13 0.360 7.759 2.836
10 2.3.4,5,6.7 ,8. 10, 13 0.522 8.622 2.898
11 , 3, 4, 5, 6, 7. 8. 10, 11, 13 0.720 9.407 2.942
1 2 , 2 , 3 ,45 , 6 , 7 , 8,1 0 , 1 1 , 1 3 , 1 6 0 .9 7 1 9 .9 6 0 2 9 7 9
13 -11. 13, 16 1.229 10.799 2.994

14 -11, 13,16, 20 

1.588 11.489 
2.996

15 -13, 16,20 1.912 12.245 2.997
16 -14, 16,20 2.437 12.751 2.993
17 -16, 20 2.815 13.513 2.990
18 -16, 18,20 3.264 14.233 2981
19 .16, 18-20 3.992 14.79 2.938

Figure 48 Comparison of Model Results for Bowen Data Set
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Subset ransmitted-Information Model Confusion/ Transmitted
size Selected Subsets Recognition Information

2 11,21 5 116 0.903
3 11,21,23 5 195 1.511
4 4,11,21,23 5 266 1.945
5 4,10,13,21,23 0 340 2.283
6 4,10,14,21,23 0 410 2.553
7 4,10,14,19,21,23 0 464 2.774
8 2, 4, 10, 14. 19,21,22,25 1 533 2.957
9 4,5, 10, 13, 14, 17, 19, 21, 23 2 587 3.114

10 , 5, 10, 13, 14, 17, 19, 21, 22, 23 5 662 3.239
11 4, 5, 10,13,14, 17,19,21-24 9 737 3.349
12 1, 4, 8, 11, 13, 17, 18, 20-24 19 805 3.445
13 1,4, 11, 13, 15, 17-24 25 868 3.519
14 4,6,7,13,14,15,17-24 28 940 3.589
15 .6,7, 13, 14, 15, 17-25 39 1013 3.639
16 2,4, 6, 7, 13, 14, 15, 17-25 51 1084 3.684
17 1, 2, 4, 6, 7, 13. 14, 15,17-25 69 1149 3.711
18 1-4, 6, 7, 13, 14, 15, 17-25 97 1196 3.717
19 1-4,6-8, 13-15, 17-25 129 1256 3.712
20 1-4, 6-9, 13-15, 17-25 170 1319 3.699
21 1-8,13-25 205 1363 3.670
22 1-9, 13-25 250 1426 3.654
23 1-9, 11, 13-25 300 1463 3.625
24 1-9, 11-25 378 1510 3.600

Figure 51 Results from Trans-Info Model for Moore Data Set
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Subset Uon ecognition Model Confusion/ Transmitted
size Selected Subsets Recogniion Information

2 1,23 0 158 1.000

3 3,21,23 0 230 1.584
4 113,21,23 0 301 1.998
5 4,14,21,23 0 371 2.320
6 14,14,20,21,23 0 438 28

7 4,14,18,20,21,23 0 498 2.802

8 4,14,18.20,21,22,25 1 567 2.982
9 ,8,13,14,18,20.21, 22,25 2 628 3.140

10 .8,13, 14, 17, 18,20.21,22,23 5 699 3.265

11 , 5, 8, 10, 13,14,1721-24 9 743 3.352
12 , 13, 14, 15, 17-24 16 837 3.443

13 4,7,13, 14,15, 17-24 22 895 3.519

14 4,6, 7, 13, 14, 15, 17-24 28 940 3.589
15 4, 6,7, 13, 14, 15, 17-25 39 1013 3.639
16 7 4,6,7,13, 14, 15,17-25 51 1084 3.684

17 ,2, 4, 6, 7, 13, 14.15, 17-25 69 1149 3.711
18 1, _ 4, 6-9, 13-15, 17, 18, 20-25 97 1218 3.700

19 1-4, 6-9, 13-15, 17, 18.20-25 119 1265 3.707
20 1-9, 13-15. 17, 18.20-25 157 1322 3.673
21 1-9, 13-18, 20-25 198 1372 3.654

22 1-9, 13-25 243 1426 3.654
23 1-9, 11, 13-25 288 1463 3.625

24 1-9, 11-25 359 1502 3.563

Figure 52 Results from Confus/Recog Model for Moore Data Set
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Subset Enumeration Scheme Confusion/ Transmitted
size Selected Subsets Recognition information

2 ,17 0 130 1.000
3 4,14 0 213 1.585
4 4,14,25 0 286 2.000
5 4,14,22,24 0 363 2.321
6 f 4,14, 20,22,24 0 430 2.584
7 4,14,18,20,21,25 0 492 2.803
8 2, 4, 14, 18, 20, 21, 22, 25 1 567 2982
9 4, 8.13, 14, 18, 20, 21, 22, 25 2 628 3.140

10 4, 8, 13, 14, 17. 18, 20, 21, 22, 23 5 699 3.265
11 4, 8, 13, 14, 17, 18, 20-24 10 774 3.364

12 ,4,8,11,13,17,18,20-24 19 805 3.445
13 1, 4,7,13,15,17-24 22 889 3.520
14 4,6,7,13-15, 17-24 28 940 3.589
15 4,6,7,13-15,17-25 39 1013 3.640
16 2,4,6,7, 13-15, 17-25 51 1084 3.684
17 1, 2,4,6,7,13-15,17-25 69 1149 3.711
18 1-4,6,7,13-15,17-25 97 1196 3.717
19 14, 6-8, 13-15. 17-25 129 1256 3.712
20 1-4.6-9, 13-15, 17-25 170 1319 3.699
21 1-9, 13-15, 17-25 208 1376 3.673
22 -9,13-25 250 1426 3.655
23 1-9, 12-25 327 1473 3.627
24 1-9,11-25 378 1510 3.600

Figure 53 Results from Enum Scheme Model for Moore Data Set
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